
slycat Documentation
Release 1.2.0

Slycat Team

Dec 05, 2018

Contents

1 Design 3

2 Documentation: 5
2.1 User Manual . 5
2.2 Design . 68
2.3 Tutorial . 70
2.4 Setup Slycat Clients . 77
2.5 Setup Slycat Web Server . 78
2.6 Docker Development . 80
2.7 Testing . 83
2.8 Coding Guidelines . 85
2.9 Plugins . 85
2.10 Colophon . 88
2.11 Models . 89
2.12 REST API . 90
2.13 Javascript API . 142
2.14 Python API . 148
2.15 Support . 177

3 Indices and tables 179

HTTP Routing Table 181

Python Module Index 183

i

ii

slycat Documentation, Release 1.2.0

This is Slycat™ - a web-based data science analysis and visualization platform, created at Sandia National Laborato-
ries.

Slycat™ is a web-based system for analysis of large, high-dimensional data, developed to provide a collaborative
platform for remote analysis of data ensembles. An ensemble is a collection of data sets, typically produced through
a series of related simulation runs. More generally, an ensemble is a set of samples, each consisting of the same
set of variables, over a shared high-dimensional space describing a particular problem domain. Ensemble analysis is
a form of meta-analysis that looks at the combined behaviors and features of a group of simulations in an effort to
understand and describe the underlying domain space. For instance, sensitivity analysis uses ensembles to examine
how simulation input parameters and simulation results are correlated. By looking at groups of runs as a whole, higher
level patterns can be seen despite variations in the individual runs.

The Slycat™ system integrates data management, scalable analysis, and visualization via commodity web clients us-
ing a multi-tiered hierarchy of computation and data storage. Analysis models are computed local or on the Slycat™
server, and model artifacts are stored in a project database. These artifacts are the basis for visualizations that are
delivered to users’ desktops through ordinary web browsers. Slycat™ currently provides two types of analysis: canon-
ical correlation analysis (CCA) to model relationships between inputs and output metrics, and time series analysis
featuring clustering and comparative visualization of waveforms. Install Slycat to try it for yourself!

Contents 1

http://www.sandia.gov
http://www.sandia.gov

slycat Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Design

Slycat™ incorporates several components:

• A Web Server that can load, transform, index, and analyze moderate amounts of data, storing the analysis results
for later visualization.

• A web-based user interface that you use to pull your data into the Slycat™ Web Server, compute analyses, and
view analysis results. You can use Slycat™ with any modern, standards-compliant browser, including Firefox,
Safari, and Chrome. There is no software to install on your workstation.

• A collection of command-line clients that can be used to push data into Slycat™ Web Server and control it
remotely, if that suits your workflow better.

The Slycat™ Web Server provides easy collaboration and a graphical user interface for analyses that have broad
appeal.

3

slycat Documentation, Release 1.2.0

4 Chapter 1. Design

CHAPTER 2

Documentation:

2.1 User Manual

2.1.1 Overview

Slycat™ is a web-based system for performing data analysis and visualization of potentially large quantities of remote,
high-dimensional data. Slycat™ specializes in working with ensemble data. An ensemble is a group of related data
sets, which typically consists of a set of simulation runs exploring the same problem space. An ensemble can be
thought of as a set of samples within a multi-variate domain, where each sample is a vector whose value defines a
point in high-dimensional space. To understand and describe the underlying problem being modeled in the simulations,
ensemble analysis looks for shared behaviors and common features across the group of runs. Additionally, ensemble
analysis tries to quantify differences found in any members that deviate from the rest of the group.

The Slycat™ system integrates data management, scalable analysis, and visualization. Results are viewed remotely on
a user’s desktop via commodity web clients using a multi-tiered hierarchy of computation and data storage, as shown
in Figure 1. Our goal is to operate on data as close to the source as possible, thereby reducing time and storage costs
associated with data movement. Consequently, we are working to develop parallel analysis capabilities that operate
on High Performance Computing (HPC) platforms, to explore approaches for reducing data size, and to implement
strategies for staging computation across the Slycat™ hierarchy.

Within Slycat™, data and visual analysis are organized around projects, which are shared by a project team. Project
members are explicitly added, each with a designated set of permissions. Although users sign-in to access Slycat™,
individual accounts are not maintained. Instead, authentication is used to determine project access. Within projects,
Slycat™ models capture analysis results and enable data exploration through various visual representations. Although
for scientists each simulation run is a model of real-world phenomena given certain conditions, we use the term model
to refer to our modeling of the ensemble data, not the physics. Different model types often provide complementary
perspectives on data features when analyzing the same data set. Each model visualizes data at several levels of
abstraction, allowing the user to range from viewing the ensemble holistically to accessing numeric parameter values
for a single run. Bookmarks provide a mechanism for sharing results, enabling interesting model states to be labeled
and saved.

5

slycat Documentation, Release 1.2.0

Fig. 1: Figure 1: Slycat multi-tiered hierarchy, designed for large data analysis and exploration with minimal
data movement.

Getting Started

Slycat™ is accessed through a web browser from your desktop computer. Slycat™ currently supports Firefox,
Chrome, and Safari browsers. We do not support Internet Explorer.

Since multiple Slycat™ servers are already in existence, you will need to obtain the URL for the Slycat™ server
that you want to use. Enter this URL into the address bar of the browser. If the authentication mechanism for your
institution relies on username and password, you will be taken to the Slycat™ login page, shown in Figure 2, where
you will be prompted for your username and password. If your institution uses single sign-on, login will happen
automatically and you will skip this step. Once your identity has been established, you will find yourself on the main
Projects page.

Slycat™ pages exist at one of three levels: the main Projects page, an individual project page, and an individual model
page. The main Projects page displays all projects which you are authorized to access. This list of projects is unique
to you. Clicking on a project name will take you to that project page, which will contain a list of all models that have
been generated within the project. Clicking on a model name will take you to that model page, which will display a
visualization of its data. At any level, clicking on the Slycat™ logo will return you to the main Projects page.

The first time that you access the Slycat™ website, your projects list will probably be empty, unless someone else has
already created a project and added you as a project member. Since models cannot exist outside of a project, you must
first create a project (see Project Creation) before you can create a model. Project-specific information consists of the
project name, a list of project members, a set of models, and a set of saved bookmarks for models within that project.

Slycat™ Navbar

At the top of every Slycat™ page is the Navbar. Working from left to right, we see the Slycat™ logo, a breadcrumb
navigation path, and a set of colored buttons providing dropdown lists categorized by function. Depending on the type
of page currently being viewed, the buttons and the contents of the dropdowns will vary. As shown in Figure 3, the
Navbar for the main Projects page, the only button available is the green Create button for creating new projects. Since
the main Projects page lies outside and above any projects, the breadcrumb navigation path points to the current page,

6 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 2: Figure 2: Slycat login page.

which is simply labeled as Slycat. Figure 4 shows that for Navbars within a project or model page, there can be up to
five buttons, including: Create, Edit, Info, Bookmarks, and Delete.

Fig. 3: Figure 3: Slycat Navbar as seen on the main Projects page. At this level, the Navbar displays the title
Slycat because we have yet to move to an individual project page.

Fig. 4: Figure 4: Navbar at the individual project page level. Here the name of the project is ‘My Project’. Note
that the Bookmarks button is hidden until at least one bookmark has been created.

As you move between pages at various levels, the breadcrumb path in the Navbar will change to reflect your current
location. The path has the format Project Name / Model Name. The path can be used to navigate within the hierarchy.
Clicking on the Project Name will take you to that project’s page with its list of associated models. Hovering over
the Project Name will display the project description, the project members, the date of creation, and who created it
(Figure 5). Similarly, hovering over the Model Name will display the model description, the date of creation, and who
created it.

Projects

Project-specific information consists of the project name, a list of project members, a set of models, and a set of saved
bookmarks for models within that project.

2.1. User Manual 7

slycat Documentation, Release 1.2.0

Fig. 5: Figure 5: Hovering over the project name will display more detailed project information.

Project Creation

Projects are created by clicking the green Create button on the main Projects page and selecting New Project from
the dropdown that appears. A dialog will pop up, providing editable regions for you to enter a Name and an optional
Description. This brief text field allows you to provide more detailed comments or notes beyond the project name.
Clicking the Finish button in the lower right corner creates the project and takes you to the newly created project page;
clicking the Cancel button in the lower left corner aborts project creation.

Once the project is created, you will find yourself on the empty project page. As the project creator, you are auto-
matically assigned the role of Administrator for that project (although there can be multiple project members with
Administrator roles). A series of buttons appears to the right of the project name. Since you have an Administrator
role, there will initially be four buttons: Create, Edit, Info, and Delete. Only project administrators can edit or delete
the project. Otherwise, there will only be two buttons: Create and Info.

Editing Projects

Clicking on the yellow Edit button on a project page and selecting Edit Project from the dropdown list provides a
means to change the project Name, Description, or project Members. An Edit Project popup will appear with the
current project information (Figure 6). In a newly created project, the membership list consists solely of the project
creator assigned the role of Administrator. The username of the creator will be shown within a red button (buttons are
color-coded according to role and red is used for an Administrator) at the bottom.

There are three different roles that project members can have: Reader, Writer, and Administrator, whose buttons are
color-coded blue, yellow, and red, respectively. Readers can view all data in a project, but they cannot create new
models, modify existing models, or delete models. Writers can both view and modify the contents of a project, but
they are unable to add new project members or edit the project name or description. Administrators have full access
to all aspects of the project, including adding new project members or deleting the project itself.

To add a project member, select a role from the dropdown list to the right of Members and type in the person’s
username. Note that the username is checked against a list of legitimate usernames and will be rejected if it is not
found. If the username is found, a popup will translate the username into the person’s full name and verify both the

8 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 6: Figure 6: Edit Project dialog allows you to change the project name, add or change a description, and
add, remove, or change the roles of project members.

2.1. User Manual 9

slycat Documentation, Release 1.2.0

identity and the role selected. Click OK if both the person and role are as you intended, or Cancel if they are not.
Now an additional button, color-coded by role and enclosing the newly added member’s username, will appear in the
member list below. Although the new member now appears to be in the project member list, this action has not been
saved and will be discarded unless the Save Changes button is pressed.

To remove project members, click on the trashcan icon next to the name of the member to be removed. To change the
role of a project member, add them as you would a new project member (you do not need to remove them first), but
with the revised role. Note that as an Administrator, you have the power to delete yourself or reduce the level of your
role (thereby losing your Administrator privileges), which is why we require you to first click the Save Changes button
before we finalize any changes. If you find that you have accidently made a change that you do not want to execute,
pressing the X button in the upper right corner of the Edit Project dialog cancels the edit and keeps the previous project
state (Name, Description, Members, and member roles) intact.

Project Info

To see a non-editable version of a project’s information, click on the cyan Info button on the project page and select
Project Details from the dropdown. A popup will display the Name, Description, and project Members list. Click
Close when you are finished viewing it. Note that this same information can be seen by hovering over the project
name in the breadcrumb navigation path.

Deleting Projects

To remove a project, including ALL ITS MODELS AND DATA, click the red Delete button from within the project
page of the project that you wish to delete. Select Delete Project from the dropdown. Note that only members
with Administrator rights may delete the project. Project deletion is an irreversible operation, so deletion requires
confirmation through a popup that asks if you really want to delete that project and all models within it. Press the red
Delete Project button to confirm deletion, or the X button in the upper right corner of the dialog to cancel the operation
and keep the project.

Models

In Slycat™, models combine analysis and visualization. Slycat™ provides three different types of models: Canonical
Correlation Analysis (CCA), Parameter Space, and Time Series. The heart of every model is a data table. For each
model type, there are predefined sets of linked views that provide different representations of the analysis results.
Generally, the visualization for each model consists of three different representations, each showing the ensemble at
a different level of abstraction. The highest-level view seeks to display the ensemble in a holistic manner. It seeks to
show what high-level behaviors or trends can be seen across most, if not all, of the simulation runs. Slycat™ currently
provides views showing correlations between inputs and outputs, or similarities between results. The intermediate-
level view presents individually distinguishable runs in the context of the group, showing how well each member
aligns with the high-level view of shared ensemble traits. The low-level view enables you to drill down to the raw data
values, both to input parameters and to the results from individual runs.

Each model has a Name, a Marking, and an optional Description. Marking choices are defined as part of the server
configuration, so they are specific to the institution that hosts the server. The intent is for Slycat™ to facilitate clear
labeling of data sensitivity through explicit choice of marking. The marking appears as part of the model description
on the Project page list, plus it is shown in both header and footer bars when visualizing the model.

Creating Models

Models are created by clicking the green Create button from within a project page and selecting one of the model types
from the dropdown list. The information needed to create a model varies depending on which model you choose, so a

10 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

popup dialog specific to the selected model will step you through entering the necessary information for that type (the
details for each are covered below). Model creation can be aborted at any stage by clicking the X button in the upper
right corner of the popup.

Fig. 7: Figure 7: Create dropdown list of model choices, as seen from a project page.

Editing Models

Clicking on the yellow Edit button on a model page and selecting Name Model from the dropdown list allows you
to change the model Name, Description, and Marking. A Name Model dialog will popup with the current model
information. Click Save Changes to modify the model description on the server, or click the X button in the upper
right of the popup to abort the operation.

Fig. 8: Figure 8: Edit dropdown list, as seen from a model page.

Reset Model

As you interact with a model and change various aspects of the visualization, Slycat™ keeps track of the current model
state. If you leave that model and return to it later, Slycat™ will resume with the model rendered according to the most
recent configuration state. Note that this is only true if you are returning to a model on the same computer using the
same browser that you previously used to view it. However, sometimes you might want to start over with the default
settings to produce the initial visualization. Clicking on the yellow Edit button on a model page and selecting Reset
Model from dropdown list will return the model state to its initial configuration.

Deleting Models

To remove a model and ALL ITS DATA, click the red Delete button from within the model page of the model that
you wish to delete. Select Delete Model from the dropdown. Model deletion is an irreversible operation, so deletion
requires confirmation through a popup asking if you really want to delete that model. Press the red Delete Model
button to confirm deletion, or click the X button in the upper right of the popup to abort the operation and keep the
model.

2.1. User Manual 11

slycat Documentation, Release 1.2.0

View Regions

The inner part of each model’s visualization is subdivided into several views or regions, each separated from adjacent
regions by a thick gray line. As you move the mouse over one of these region dividers, a double-headed arrow cursor
perpendicular to the divider replaces the normal arrow cursor, the line extent (all but a darker gray center section)
highlights in yellow, and the tooltip Resize pops up. If you click and drag the divider while this is enabled, the divider
will move until you release it, resizing the regions on either side to reflect proportional changes created by the new
divider location. The divider can be dragged to the very edge, effectively hiding the view.

Alternately, if you move the mouse over the darker center section of a divider, the center section highlights in yellow,
the icon become a hand with a pointing finger, and the tooltip Close appears. Clicking the mouse button now will
collapse one of the two adjacent regions. It collapses the region that is closer to the edge of the browser window.
Clicking a second time on that same divider (now positioned along the edge of the model visualization) will restore
the previous layout.

Download Data Table

Since data tables are at the core of each model type, all models provide a table download operation. The download
can take one of several forms: download the entire table, download only selected items, or download only visible
items. As will be described later (see Selecting Points and Filtering), selection and filtering can be used to divide the
data into sets using two approaches, either through highlighting or through visibility. Highlighting and visibility are
independently defined sets, so selected items are not necessarily visible.

This functionality can be used to download a table or a table subset to your desktop, which can then be used to generate
a new model. For example, if you had an ensemble where some of the runs failed to terminate properly, you could
filter those runs out and download the subset of runs that finished correctly. Then you could use that subset to generate
new models where the failed runs are not biasing the analysis results. Or alternately, you could download the subset
that failed and use that table to create a Parameter Space model to explore what the failures have in common.

Color Themes

Color is used extensively in Slycat™ to encode information of various types. In the table views that appear within
each model, green columns are associated with input variables, lavender designates output variables, and unspecified
variables are not colored (they are rendered using an off-white).

Fig. 9: Figure 9: Dropdown list of color theme choices from the Colors button.

Slycat™ provides a set of predefined color themes, which are individually assigned to each model. A color theme
consists of a bundled scatterplot background color and color palette for mapping numeric values to color-coded objects
in Slycat™ views. Below the Navbar on the model page, there is an additional row of model-specific buttons. To
change the current color theme, click the Colors button. As shown in Figure 9, there are four color themes available in
the dropdown: Night, Day, Rainbow Night, and Rainbow Day. Night is the default choice. Night has a gray background

12 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

and uses a diverging palette that maps low values to blue and high values to red, transitioning through white for values
in the middle of the range1. Day has a white background and a similar blue to red mapping, though the palette is
slightly shifted to transition through gray instead of white to enable you to distinguish points in the middle of the
range from the background. Rainbow Night has a gray background and a conventional rainbow palette. Rainbow Day
has a white background and a conventional rainbow palette. Although we provide Rainbow themes, we discourage
their use since color order in the middle of the range is not intuitive.

Bookmarks

Each time you interact with a model, changes in model state are preserved in a Bookmark and the URL in your
browser’s address bar is modified to incorporate the latest bookmark id. The id links to a description of the model state
that is stored on the Slycat™ server. Although the contents of a bookmark are model dependent, all bookmarks capture
the current visualization state so that it can be reproduced (though parameters such as view region sizes are not saved,
since they are device dependent). Examples of the types of information stored in a bookmark include color-encoding,
highlighted selections, filter values and limits, pinned media selections, and hidden points.

Bookmarking enables many useful functions. Dragging and dropping the URL from the address bar into an email,
you can share a specific state of the visualization with other project members. If you save model pages as browser
bookmarks, you can archive and recall interesting model states, though you will be limited to viewing them on the
machine where you created them. The current bookmark id is stored locally in your browser’s cache. This enables
you to pick up where you left off when you begin new session with a previously viewed model.

Within Slycat™ there is the concept of a saved Bookmark. This Bookmark is a persistent link to a model state that
you explicitly save within a project. Slycat™ saves the current bookmark id along with a label that you provide. This
provides a convenient, machine-independent mechanism for saving exploratory results. Bookmarks can be used to
remember visualizations that reveal interesting patterns, to share findings with other team members, or to create a
flipbook-style narrative for a demonstration.

To create a Bookmark, click the blue Bookmarks button from within a model page and select Create New (Figure 10).
A Create Saved Bookmark popup will appear (Figure 11). Type in a Name and click the Save Bookmark button on the
right to save it, or click on the X button in the upper right corner of the dialog to abort the operation. The Bookmarks
button dropdown will display a list of all the bookmarks associated with the project. If you are on a model page,
Bookmarks associated with that model are listed at the top, while those for other models appear below, each labeled
with their model type. Clicking on a Bookmark in the list takes you to the associated model and visualizes it according
to the saved state. To modify the name of a bookmark, click on the yellow pencil icon. To delete a bookmark, click on
its red trashcan.

Fig. 10: Figure 10: Bookmarks dropdown, including one previously saved bookmark.

Note that changes to the View Regions are not currently preserved in bookmarks. Consequently, when the layout has
been modified prior to the model being bookmarked, visualizing the Bookmark will render the model using the default
View Regions layout.

1 Moreland, K., Diverging Color Maps for Scientific Visualization. Advances in Visual Computing, vol. 5876, pp. 92-103. Springer, Berlin
(2009).

2.1. User Manual 13

slycat Documentation, Release 1.2.0

Fig. 11: Figure 11: Example of a Create Saved Bookmark dialog.

Templates

Templates are essentially Bookmarks, but they lack an associated model. Templates provide a means for applying the
same visualization state to another model of that same model type. Note that the similarity between the template’s
original data and the new data set will determine the similarity of the resulting visualization. For dissimilar data,
some portions of the saved state may not be applicable (in which case those attributes are ignored), or the results may
significantly differ from your expectations.

To create a Template, click the green Create button, then select Template from the dropdown list. A Create Template
popup will appear. Type in a Name and click the Save Template button on the right to save it, or click the X button to
abort the operation.

Fig. 12: Figure 12: Edit dropdown for models, providing Apply Template functionality.

To apply a Template to a model, from within that model’s page click the yellow Edit button and select Apply Template
from the dropdown list (Figure 12). The Apply Template popup will appear. Select the name of the template that you
wish to use from the list and click the Apply Template button on the right to execute, or click the X button to abort the
operation. Note that bookmarks can also be used as templates, so they are included in the list of available templates
(Figure 13). However, they are not interchangeable. Templates will not appear in the Bookmarks dropdown list, since
they cannot be rendered without an associated model.

14 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 13: Figure 13: Apply Template dialog. Note that a bookmark appears in the template list.

2.1.2 Canonical Correlation Analysis Model

Canonical Correlation Analysis (CCA) was first proposed by Hotelling in 19361. Because CCA finds correlations
between two multivariate data sets, CCA data structures are a good fit for exploring relationships between the input and
output variables found in ensemble data sets (such as those generated for sensitivity studies, uncertainty quantification,
model tuning, or parameter studies). Slycat™ uses CCA to model the many-to-many relationships between multiple
input parameters and multiple output metrics. CCA is a linear method and a direct generalization of several standard
statistical techniques, including Principal Component Analysis (PCA), Multiple Linear Regression (MLR), and Partial
Least Squares (PLS)23.

CCA operates on a table of scalar data, where each column is a single input or output variable across all runs, and
each row consists of the values for each of the variables in a single simulation. Slycat™ requires the number of rows
(samples) to be greater than the minimum variable count of the inputs or the outputs. A more meaningful result will
be obtained if the ratio of runs to variables is ten or more. Additionally, columns cannot contain the same value
for all runs. Slycat™ will reject such columns from being included in the CCA analysis, since they contribute no
differentiating information. CCA cannot handle rows with missing data, Inf, -Inf, NAN, or NULL values. Slycat™
will remove rows from the analysis if any of the values in either the input or output variable sets include such data.
However, if the bad values are only in columns that are not analysis variables, the row will be used.

For a concise description of CCA, we need the following definitions. Given n samples (n rows in the table), the input
variables (presumed to be independent) will be referred to as the set X = {x1, . . . , xn} and the output (dependent)
variables as the set Y = {y1, . . . , yn}. Each vector xi has p1 components and each vector yj has p2 components. CCA
attempts to find projections a and b such that R2 = corr (aTX, bTY) is maximized, where corr (•,•) denotes the standard
Pearson correlation.

The vectors aTX and bTY are known as the first pair of canonical variables. Further pairs of canonical variables are
orthogonal and ordered by decreasing importance. In addition to the canonical variables, the R2 value for each variable
pair is obtained, and various statistics can be computed to determine the significance of the correlation. A common
statistic used in this context is the p-value associated with Wilks’ 𝜆4. Slycat™ provides both R2 and p-values for each

1 Hotelling, H., Relations Between Two Sets of Variates. Biometrika, 28, 321-377 (1936).
2 Adams, B.M., Ebeida, M.S., Eldred, M.S., Jakeman, J.D., Swiler, L.P., Bohnhoff, W.J., Dalbey,K.R., Eddy, J.P., Hu, K.T., Vigil, D.M., Bauman,

L.E., and Hough, P.D., Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis: Version 5.3.1 User’s Manual. Tech. Rep. SAND2010-2183, Sandia National Laboratories (2013).

3 Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., and Mauldin, J., ParaView Catalyst: Enabling In Situ Data Analysis
and Visualization, Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV2015),
pp. 25-29, ACM, New York, NY (2015).

4 Krzanowski, W. J., Principles of Multivariate Analysis. A User’s Perspective. Oxford University Press, London (1988).

2.1. User Manual 15

slycat Documentation, Release 1.2.0

canonical component as part of the Correlation View (see the figure below). Note that these statistics assume that the
data is normally distributed. If your data does not follow a normal distribution, be aware that these statistics will be
suspect and adjust your interpretation of the results accordingly.

Once the canonical variables are determined, they can be used to understand how the variables in X are related to the
variables in Y, although this should be done with some caution. The components of the vectors a and b can be used to
determine the relative importance of the corresponding variables in X and Y. These components are known as canonical
coefficients. However, the canonical coefficients are considered difficult to interpret and may hide certain redundancies
in the data. For this reason, Slycat™ visualizes the canonical loadings, also known as the structure coefficients. The
structure coefficients are generally preferred over the canonical coefficients because they are more closely related to
the original variables. The structure coefficients are given by the correlations between the canonical variables and the
original variables (e.g. corr (aTX, X) and corr (aTY, Y)). These are calculated using Pearson’s correlation between each
column of X or Y and the corresponding canonical variable.

Fig. 14: Canonical components are shown in the Correlation View in the upper left.

Cars Example Data Set

In the following sections, we will use the cars data set1 to illustrate model creation and CCA in general. Cars is not an
ensemble of simulation data. Instead, it is a list of features for 406 automobiles built between 1970 and 1982. Selecting
attributes which describe a car’s physical system and labeling them as inputs, while grouping the performance-based
variables as outputs, we can see the relationships between design choices and various performance metrics. Since
CCA can only evaluate correlations between numeric variables, the analysis omits two columns, Model and Origin,
which are string and categorical variables, respectively. Also note that Acceleration is a variable measuring the number
of seconds required to accelerate from 0 to 60 mph, so lower values represent greater acceleration.

This data set provides an intuitive introduction to CCA because most people already have some idea of how a car’s
manufacturing and performance features are related. Increasing weight, displacement, and number of cylinders all

1 Donoho, D. and Ramos, E., PRIMDATA: Data Sets for Use With PRIM-H, http://lib.stat.cmu.edu/datasets/cars.desc and http://lib.stat.cmu.edu/
datasets/cars.data (1982)

16 Chapter 2. Documentation:

http://lib.stat.cmu.edu/datasets/cars.desc
http://lib.stat.cmu.edu/datasets/cars.data
http://lib.stat.cmu.edu/datasets/cars.data

slycat Documentation, Release 1.2.0

represent larger engines, which are in turn correlated with greater horsepower, lower miles per gallon (MPG), and
faster acceleration. Due to the Arab oil embargos during the model years in this data set, engine sizes decreased over
time to facilitate increased MPG.

Creating a CCA Model

Slycat™ accepts two file formats for table data, either Comma Separated Value (CSV) files, or Dakota tabular files
(generated by Dakota1, software which is frequently used to generate ensemble data sets). If your data is not currently
in one of these two formats, Excel can be used to create CSV files from most common table formats. Note that if
output metrics have been created separately in a post-processing step, they will need to be integrated with the inputs
into a single file prior to model creation. In a CSV file, we expect to see only a single row of header information
consisting of the column names.

Fig. 15: Figure 14: Popup dialog in the CCA model creation wizard.

From your project page, click on the green Create button and select New CCA Model from the dropdown list. A dialog
for walking you through the process will then pop up, as shown in Figure 14. The first page of the model creation
wizard identifies whether the table is located on the local machine or whether the data is held on a remote machine.
Select Local or Remote, followed by Continue to advance to the next page of the wizard.

Local Files

As shown in Figure 15, if you selected Local, the next page will display two fields, File and Filetype. Adjacent to File,
is the button Browse. Clicking Browse brings up a local file browser, which you can use to navigate to the location of
your data table. After selecting a file, the file browser closes and the name of your selected file appears to the right of
the Browse button, as shown in Figure 16. Depending on the format of the selected file, select either CSV or Dakota
tabular from the Filetype dropdown, followed by Continue to read the file. Note, you can change your mind and read
the table from a Remote host by clicking the Back button to return to the previous page.

1 Adams, B.M., Ebeida, M.S., Eldred, M.S., Jakeman, J.D., Swiler, L.P., Bohnhoff, W.J., Dalbey, K.R., Eddy, J.P., Hu, K.T., Vigil, D.M., Bau-
man, L.E., and Hough, P.D., Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis: Version 5.3.1 User’s Manual. Tech. Rep. SAND2010-2183, Sandia National Laboratories (2013).

2.1. User Manual 17

slycat Documentation, Release 1.2.0

Fig. 16: Figure 15: Local file upload dialog (with no file selected) in CCA model creation wizard.

Fig. 17: Figure 16: Selected file, table.csv, shown in CCA model creation dialog.

18 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Remote Files

As shown in Figure 17, if you select Remote, the Choose Host page enables you to log into a remote machine through
Slycat™. First select a machine from the dropdown list, which is revealed by clicking the triangle to the right of
Hostname. If the machine you wish to access is not on the list, type the machine name into the field. The name will
be remembered and used as the default host for the next time. Username defaults to the username that you provided
when logging into Slycat™, but this field can be manually edited if desired. Finally, enter your Password and click the
Continue button in the lower right to connect to the remote host.

Fig. 18: Figure 17: Remote system login for table ingestion in CCA model creation wizard.

Once you are connected, the model creation wizard will display a remote file browser. If you have previously accessed
this machine through Slycat™, the browser directory will be initialized to your last location. Otherwise, the browser
default directory will be the machine’s root directory. There are two methods for navigating the remote directory
structure to find your data: (1) if you know the full directory path, type it directly into the field at the top of the page
(shown in Figure 18) and click the Go button;

Fig. 19: Figure 18: File path field in remote file browser.

or (2) move up and down the directory hierarchy by clicking on folders in the list. Clicking on (the folder labeled

‘..’ in the file list), or on the Up Directory button (to the right of the file path) moves you up a level in the hierarchy,
while clicking on a named folder moves you down a level. Once you are in the directory that contains your table
data, click on the file to select it. Ensure that the format shown in the Filetype dropdown matches the selected file’s
type, then click Continue to read the file. Note, you can change your mind and read the table from your Local host by
clicking the Back button to return to the previous page.

Select Columns

Once the table has been read, either from a Local or a Remote source, the Select Columns page displays a list of the
table’s variable (column) names and asks you to categorize them as Input, Output, or Neither for the CCA analysis.

2.1. User Manual 19

slycat Documentation, Release 1.2.0

Variables marked as Neither are omitted from the analysis altogether. Since CCA requires numeric values, strings are
automatically excluded from consideration.

Looking at the variables in our Cars example in Figure 19, the faded variable name at the top of the list, Model, is
the name for each car model. Because its values are all strings, it has been automatically set to Neither and cannot be
changed. Although Origin is a numeric variable, the numbers are encoding categorical labels whose value order has
no meaning (US = 1, Europe = 2, Asia =3). Because the values have no ordinal interpretation, Origin should also be
removed from the analysis.

Fig. 20: Figure 19: Initial configuration in the Select Columns dialog for the cars data set.

Since the number of inputs typically exceeds the number of outputs, we initialize all numeric variables to be inputs,
leaving you to identify just the output and excluded variables. If variables shown for this table don’t correspond to the
ones you wanted or expected, you can click the Back button to select a different table file.

Variables can be marked one at a time by clicking the radio buttons, or they can be marked in larger groups by using
either shift-click to select a contiguous group of variables, or by using control-click to pick a scattered set of rows
(as demonstrated in Figure 20). For group selections, you must click on the rows near the variable names instead of

near the radio buttons. Once you have highlighted a set of lines for joint assignment, click on the icon under
the desired category to set the radio buttons for the group, as shown in Figure 21. Since CCA can be performed on
any subset of variables, you can also use it to calculate correlations between multiple inputs and a single output, or
between any two individual variables.

Sometimes value ranges between variables differ by many orders of magnitude, which can bias the analysis. The
checkbox, Scale inputs to unit variance, permits you to normalize the values prior to running CCA. This feature is
enabled by default. If you wish to perform the analysis using the original unscaled values, click within the box to
remove the checkmark.

Once you have finished defining the input/output variables for the CCA analysis and have determined whether you
want the values to be scaled, click Continue to go to the final step where you provide a name for your model.

20 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 21: Figure 20: Click on the icon beneath Output to label the highlighted variables as outputs.

Fig. 22: Figure 21: Result of using shift-click and the group assignment icon to select Output variables.

2.1. User Manual 21

slycat Documentation, Release 1.2.0

Name Model

The final page of the CCA model creation wizard, shown in Figure 22, provides editable fields to enter a Name and an
optional Description for the model. A default name of New CCA Model is provided, but the model list on the project
page will become uninterpretable if you use this for all your models. Additionally, you should select a Marking from
the dropdown list of choices. These markings are specific to your institution and the Slycat™ server you are using. The
selected marking identifies the sensitivity of the data that is being analyzed, both for your own benefit and for other
team members. This marking is used to label the model, both on the project page and within banners at the top and
bottom of the model visualization. Once this information has been entered, click the Finish & Go To Model button in
the lower right. Slycat™ will then transfer you to the model visualization page. When the analysis has completed, the
CCA model will be displayed. If processing is still ongoing, the message “The model is being computed. Patience!”
will be shown.

Fig. 23: Figure 22: The final step in CCA model creation is to name the model and apply markings.

CCA Model Visualization

As shown below, visualization of a CCA model consists of three linked views, each providing a different level of
abstraction. The most abstract level is the Correlation View, where each column displays the structure coefficients
for one of the canonical components. The scatterplot in the Simulation View shows how well each individual run
is described by the correlations found in the ensemble overall. The least abstract view is the Variable Table, which
provides the raw data values contained in the original table file. The views are all linked, so changing the selection
in one view will modify the selection in one or more of the other views. As with most Slycat™ models, the views
are arranged with the ensemble level view in the upper left, the midrange view in the upper right, and the lowest level
view at the bottom.

Correlation View

The Correlation View displays the relationships found between variables when the ensemble is viewed holistically.
Each column of the Correlation View’s bar chart represents a different canonical component. These orthogonal com-

22 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 24: CCA model of cars data set with three linked views, each providing a different level of abstraction. The
Correlation View is in the upper left, the Simulation View and its associated Legend are in the upper right, and
the Variable Table fills the bottom half.

2.1. User Manual 23

slycat Documentation, Release 1.2.0

ponents are ordered from left to right in decreasing importance, as shown by the decreasing R2 and increasing p-values
in the first two rows of each component column. Variable names are shown along the left edge with rows for input
variables colored in green, and rows for output variables colored in lavender. The number of components returned by
CCA is equal to the minimum of the number of inputs versus the number of outputs. So, for the example in Figure 23,
where there are four inputs and three outputs, CCA will return three canonical components.

Fig. 25: Figure 23: CCA model of cars data set displaying the first canonical component.

In the bar chart, only one canonical component is expanded at a time (e.g. in Figure 23, CCA1 is expanded, while
in Figure 24, CCA1 is collapsed and CCA2 is expanded). Clicking on a CCA column name changes the selected
canonical component. This collapses the bar chart from the previously selected component and expands that of the
new component.

The horizontal bars in the expanded bar chart visually encode the relationships between variables, both in terms of the
magnitude of the structure coefficients, and in terms of the correlation type (positive or negative). Numeric values for
the coefficients are displayed in the center of each column. Positive values are drawn as red bars extending towards
the right. Negative values are drawn in blue extending to the left. The orientation combined with the color-coding acts
to visually reinforce the relationship information. At a glance, you can see correlative relationships between variables
and their strength by comparing the color, direction, and length of the bars. Positively correlated variables will display
the same color and bar orientation, while negatively correlated variables will be opposed.

The bar chart rows can be sorted by variable strength. To the right of the CCA column name is a small triangular
icon. Clicking on this icon sorts the columns by the unsigned magnitudes of the structure coefficients in the expanded
column, though all columns will reflect the order returned by this sorting operation (i.e. the rows are sorted using
this column as the key). The initial sort is descending and the orientation of the triangle reflects this by rendering
the triangle with the wide edge at the top and the point at the bottom (e.g. CCA1 in Figure 23). The sorting order is
reversed if you click the triangle again. Ascending sorts are signified by rendering the triangle with the point at the
top. Inputs and outputs are sorted independently. For long lists of variables, the input and output variable sets are
independently scrollable. Note that in Figure 24, although CCA2 is selected, the decreasing sort order from CCA1
is still maintained. Sorting column is independent of component selection. Hovering over any of the CCA column
headers, the sorting icon for that column becomes visible and can be clicked without needing to expand the component.

24 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 26: Figure 24: CCA model of Cars data set displaying the second canonical component.

Clicking on a row in the bar chart selects that variable for color-coding the points in the Simulation View (i.e. each
simulation point is color-coded according to its value for that variable). The variable row is highlighted by darkening
the background color and changing the font color to white. The color palette, shown in the Legend alongside the
value range for the color-coding variable, corresponds to the currently selected theme (see color-themes). This same
color-coding is applied to the cell backgrounds of this column of the Variable Table, as is demonstrated by the Weight
column in both Figure 23 and Figure 24.

Simulation View

The Simulation View is a scatterplot, in which each point represents an ensemble member. The axes of the scatterplot
are the canonical variables, aTX and bTY, which are labeled as Input Metavariable and Output Metavariable. The
x and y coordinates of each point are weighted sums of that point’s input and output variable values, respectively.
Because the values of the canonical variables differ for each canonical component, changing the selected component
in the Correlation View changes the point coordinates, which are then re-rendered in the scatterplot. Comparing the
scatterplots in Figure 23 and Figure 24, you can see how the point locations shift from a loose diagonal for CCA1, to a
ball of points for CCA2. Given the low R2 and high p-value for CCA2, the scatterplot point placement visually reveals
the poor quality of the result (all points would be on the diagonal in an ideal result).

Legend

To the right of the scatterplot is the Legend. The Legend is in its own view, which can be resized or closed altogether.
The Legend displays information about the current color-coding variable, including its name, range of values, and the
mapping between values and colors. The color palette is defined by the current theme (see Color Themes).

2.1. User Manual 25

slycat Documentation, Release 1.2.0

Fig. 27: Figure 23: CCA model of cars data set displaying the first canonical component.

Fig. 28: Figure 24: CCA model of Cars data set displaying the second canonical component.

26 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Color-Coding Points

The first time a model is rendered, the points are colored by their index number. There are three mechanisms for
changing the variable that is used to do the color-coding: clicking on a variable in the Correlation View, clicking on
the column header in the Variable Table, or selecting a variable from the Point Color dropdown list. Irrespective of
the interface used, changing the variable selected for color mapping will lead to changes in all three views and the
legend, including: highlighting the newly selected variable’s row in the bar chart, recoloring the scatterplot using the
new variable’s values, coloring the cell backgrounds in its table column, returning the cell backgrounds of the previ-
ously selected variable’s column to its default color (green, lavender, or white depending on its type), and relabeling
and redefining the value range in the Legend. Note that the table may include variables that are not present in the
Correlation View, columns that are neither inputs nor outputs. These columns are drawn on the right end of the table
against white backgrounds. These provide additional color-coding options (numeric variables only), however, the bar
chart will not be highlighted because it only includes variables passed to CCA.

Selecting Points

Points in the scatterplot may be selected through several mechanisms. The simplest is to place the mouse cursor
over a point and click the left mouse button. The selected point is redrawn in the plot with a larger radius, while
simultaneously in the Variable Table, the row corresponding to the selected point is darkened and scrolled to be
visible.

For groups of adjacent points that lie within a rectangular region, rubber banding can be used to draw a rectangle
around the desired point set. Position the mouse at one corner of the region. Press the left mouse button down while
simultaneously moving the mouse towards the opposite corner of the region. A yellow rectangle will be drawn between
the location of the initial button-press and the mouse’s current position. Move the mouse until the rectangle encloses
all the desired points, then release the mouse button to finish the selection.

Holding the control-key while selecting new points, either through clicking or rubber banding, will add these additional
points to the previously selected set. Alternately, scatterplot points can be selected by picking rows in the Variable
Table (see Simulation Selection).

Clicking in the background (not on any point) deselects all previously selected points.

Variable Table

The Variable Table at the bottom of Figure 23 provides access to the original numeric variable values for each simula-
tion run. It is essentially an interactive version of the original table data, where each column represents a single variable
and each row contains the variable values for a single ensemble member. Within the table, the cell backgrounds take
on one of four color-encodings: input variables are green, outputs are lavender, non-designated variables are white,
and the elements of the selected variable are individually colored by their value using the current color map (see Color
Themes). Coloring table elements by value highlights the selected color-coding variable, while concurrently providing
color correspondence between rows and scatterplot points. The interactive capabilities of the table include: sorting
within columns, column (variable) selection, and row (simulation) selection.

Rows that have not been used in the CCA analysis have white backgrounds. CCA requires that all rows have values
for each of the columns that are included in the analysis. As shown in Figure 24, the cars in rows 382 and 10 are
missing values for Horsepower and MPG, respectively. The missing data are shown with no numeric value and a
hatched gray background in the table. Since the columns with missing values were declared as outputs during model
creation, rows 382 and 10 have been entirely excluded from the analysis and are drawn in white. If CCA is later rerun,
and if Horsepower and MPG are removed from the analysis (if the columns are marked as Neither when creating the
new model), then these rows will be included in the calculation and will be color-coded.

2.1. User Manual 27

slycat Documentation, Release 1.2.0

Fig. 29: Figure 23: CCA model of cars data set displaying the first canonical component.

Fig. 30: Figure 24: CCA model of Cars data set displaying the second canonical component.

28 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Sorting

Sorting allows rapid identification of simulations whose variable values are extrema. Additionally, sorting facilitates
comparison between simulations whose values are similar within one variable, but whose values for other variables
might differ significantly. For instance, in Figure 23 and Figure 24 the tables are sorted by weight. The highlighted
row appears adjacent to cars having similar weights, yet the selected car is notable because it gets much better gas
mileage.

Although the sorting order is defined by values within a single column, the full row moves in the reordering. To sort
on a variable, left-click the small triangular icon in the column header. The initial sort is ascending and the orientation
of the triangle reflects this by rendering the triangle with the tip at the top and the wide edge at the bottom. If you
click the triangle again, the sorting order is reversed to be descending and the triangle is redrawn with the point at
the bottom. The sorting column is independent of variable selection (see Color-Coding Points). Hovering over any
of the column headers, the sorting icon for that column becomes visible and may be clicked to initiate sorting on that
variable.

Variable Selection

Left-clicking the variable name in a column header selects that variable to color-code the scatterplot points in the
Simulation View, to color the cell backgrounds in its associated table column, and to highlight that variable’s row in
the Correlation View.

Simulation Selection

Left-clicking within a table row selects that simulation, which is then highlighted in both the table and the scatterplot.
Multiple row selection, as is commonly performed on lists, consists of clicking on a starting row, then using shift-click
to select the ending row (either above or below the starting row). This selects both the starting and ending rows along
with all rows in between. Individual rows may be added to an existing selection by clicking on them while pressing
the control-key. Selected rows are highlighted in the table by increasing the saturation of cell backgrounds, except for
cells in the color-coding column (see Variable Table). Selected scatterplot points are highlighted by being redrawn
with an increased radius.

2.1.3 Parameter Space Model

Unlike the CCA and Time Series models, the Parameter Space model does not perform an analysis step. Instead,
the Parameter Space model is an exploratory visual interface that combines a filterable scatterplot representation with
remote access to images, videos, and other media-based ensemble data.

Taylor Anvil Impact Scenario (TAIS) Data Set

TAIS was generated using Sierra/SolidMechanics1 (a Lagrangian, three-dimensional code for problems with large
deformations and nonlinear material behaviors) in combination with ParaView/Catalyst2. The images were generated
in situ (at the same time as the physics simulation) using Catalyst. The simulation is of an Oxygen Free High Con-
ductivity (OFHC) copper cylinder, 2.54 cm long with a diameter of .762 cm and an initial velocity of 190 m/sec,
impacting a rigid wall. The ensemble is a sensitivity study that evaluates the effects of changing four parameters of the
Johnson-Cook inelastic constitutive law: ajo, bjo, njo, and beta. The height and radius of the cylinder after the impact

1 Sierra Solid Mechanics Team. Sierra/SolidMechanics 4.22 User’s Guide. Technical Report SAND2011-7597, Sandia National Laboratories
(2011).

2 Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., and Mauldin, J., ParaView Catalyst: Enabling In Situ Data Analysis
and Visualization, Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV2015),
pp. 25-29, ACM, New York, NY (2015).

2.1. User Manual 29

slycat Documentation, Release 1.2.0

are compared to experimental photographic results. Two output metrics are calculated for each run, ndrf_last and
ndhf_last. These variables are the normalized differences between the radius/height of the final cylinder state from
the last timestep of the simulation and the final radius/height of the cylinder in the experiment, respectively. Since
the differences would decrease in those cases where the simulation more closely matched the experimental results,
the optimal case would be a simulation where the values of these two metrics were zero (i.e. there is no difference
between the simulation and the experiment).

Creating a Parameter Space Model

Like the CCA model, the core of the Parameter Space model is table data. Up until the stage where inputs and outputs
for the model are selected, the model creation steps are identical to CCA (see Creating a CCA Model). Instead of
initializing all variables as Input, the variables default to being assigned as Neither. As with CCA, group selection
operations using shift-click and/or control-click allow rapid assignment of variable types (see Select Columns). How-
ever, a central difference in the Parameter Space model is that variables can also be designated as being Categorical
and/or Editable.

Fig. 31: Figure 25: Parameter Space model creation wizard dialog for designating variable attributes, including
Categorical and Editable.

Categorical variables are those with a limited number of discrete values. During scatterplot filtering, it is often
advantageous to be able to turn on or off points that are associated with specific values or combinations of values.
Categorical variables are filtered using labeled buttons, which can individually be set on or off. Continuous variables
are filtered using a slider, which is limited to defining a single range of values to be included or excluded. By declaring
Year and Cylinders as Categorical variables during model creation, the example in Figure 26 shows how we can filter
the scatterplot display to be only those cars having 3, 5, or 8 cylinders that were manufactured in even-numbered years.
This fine-grained filtering of the data would be impossible using a range slider.

An Editable variable is one that can be modified by the user. The type of values originally in the variable define the
type of values that can be substituted (i.e. numeric variables cannot be changed into text strings). A variable can only
be defined as Editable during model creation. The mechanism for changing variable values is through selection (see
Selecting Points). Note that value modification actions in the Selection Action dropdown list are only enabled when
an Editable variable has been declared.

30 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 32: Figure 26: Filters for Categorical variables enumerate each discrete value as a labeled button, enabling
filtering operations that would not be possible using range sliders. The values selected here (shown in dark blue)
limit the scatterplot to display just those cars with 3, 5, or 8 cylinders that were manufactured in even-numbered
years.

2.1. User Manual 31

slycat Documentation, Release 1.2.0

Parameter Space Model Visualization

As shown below, the Parameter Space model page consists of linked scatterplot and data table views, combined with
interactive filtering, data manipulation, and remote viewing of images and other media. The Scatterplot View provides
an abstract representation of the ensemble members and their value distributions within the variables selected for the
axes. The Variable Table provides the raw data values contained in the original table file. Changes made to the plot or
the table will cause corresponding changes in the other.

Fig. 33: Parameter Space Model of cars data set with Scatterplot and Variable Table views, each providing a
different level of abstraction.

As with the CCA Model Visualization example, we will be using the Cars data set in the following sections to illustrate
some of the Parameter Space Model features. We will also be using the Taylor Anvil Impact Scenario (TAIS) ensemble,
which includes image data, to demonstrate some of the media-based functionality.

Scatterplot View

The Scatterplot View represents each ensemble member as a point in a two-dimensional plot, where the variables
that are used for the x-axis, y-axis, and point color-coding are interactively selected. As with the CCA Model, when
individual points or groups of points are selected within the plot (see Selecting Points), corresponding rows in the
Variable Table are simultaneously selected, and vice versa.

However, the Parameter Space Model’s Scatterplot View possesses additional capabilities that the CCA Model’s Sim-
ulation View lacks. If the Variable Table contains media columns (URIs for images, videos, time series tables, or
STLs), hovering over a point with the mouse can be used to retrieve media items from remote HPC systems. The
media variable to be retrieved is selected through a Media Set dropdown list, which only appears in the controls (as
shown in Figure 28) when media columns are present in the table.

Another key feature in the Scatterplot View is the ability to reduce the number of visible points through filtering or
point hiding. This is important for interacting with large ensembles, since point overlap and occlusion increase with

32 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 34: Figure 27: Parameter Space Model visualization of the Cars data set.

Fig. 35: Figure 28: Full set of Parameter Space model-specific controls.

2.1. User Manual 33

slycat Documentation, Release 1.2.0

ensemble size. Additionally, the Scatterplot View enables the inclusion of points with missing data. Although a point
still requires values to exist in both axis variables to define its coordinates, none of the other variables need to have
a value for the point to be displayed. The points colored dark gray in Figure 27 are examples of rows with missing
values for Horsepower. One of these is row 133, which is highlighted in both the scatterplot (enlarged point) and the
table (darkened row).

Filtering

There are two mutually exclusive mechanisms in the Parameter Space scatterplot for removing points from the view,
filtering and hiding selected points. Once a filter is present, point hiding operations in the Selection Action dropdown
are disabled. If points had previously been hidden using point hiding, they immediately become visible again as soon
as any filter is selected. This ensures that during filtering, visible points only reflect the filtering choices. We did
this because we wanted screenshots of the model that included filters to be self-documenting as to which values were
retained and which had been removed. This is useful for interpreting slides or figures outside of the Slycat™ interface.

However, sometimes manually removing points through selection is the only way to define a set of points matching
criteria that are not achievable through filtering. Since multiple selections may be required to construct this set, we
want to avoid discarding it unintentionally. Consequently, the last visibility state is saved when filters are enabled.
Once all filters have been removed, the scatterplot returns to its previous state of visibility (i.e. any points that were
previously hidden through the selection mechanism will return to being hidden). To explicitly return to a state of total
point visibility, click the Show All button.

Similarly, filter states are saved, so if you remove a filter and then reinstate it, the filter will resume with its previous
settings (button states or slider range). This way, if you accidentally remove a filter and don’t remember the settings,
you can instantly restore your state.

Fig. 36: Figure 29: Filter dropdown variable list for cars data.

To add a filter, click on the Filter button to drop down a list of variables, such as those for the cars data shown in Figure
29. Selecting a variable from the list displays a filter consisting of either a set of buttons for categorical variables (see

34 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Creating a Parameter Space Model for how to define a categorical variable), or a slider for continuous variables (Figure

30 shows examples of each). To remove a filter, click the icon in the upper left corner of the filter. In both types of
filters, blue coloration of the buttons or the slider range indicates values that are visible, whereas gray is used for values
that are not visible. As filters are changed to remove values, corresponding points are removed from the scatterplot
and their rows in the table are grayed out. Conversely, as filters add values back into the visible set, corresponding
points will reappear in the plot and their table rows will be re-colored.

Fig. 37: Figure 30: Examples of both a categorical and a continuous filter.

Categorical Filters

Initially, all filter buttons are on (visible values are colored blue), as shown below. So all values are visible the first time
that a filter is instantiated. Clicking a blue button sets its state to off, colors the button gray (hidden values are colored
gray), hides points with that value in the scatterplot, and grays/fades the corresponding rows in the table. Buttons are
toggles, so clicking the button again restores that value’s point visibility in the plot and re-colors those rows in the
table.

In addition to individual buttons, group operations are also available through the three icons at the bottom

of the filter. Use to turn all buttons on, to turn all buttons off, and to flip the states of all buttons. As an
example of using group operations, imagine that you wanted to see only cars with 5-cylinder engines. You could turn

all buttons off with , then click button 5 to show just those points. This would be faster than individually turning
off the 3, 4, 6, and 8-cylinder buttons.

For categorical filters, sometimes the width of the button label exceeds the width of the button. To expand the filter

width, click the icon in the upper right corner of the filter. This will widen the filter and replace the icon with

the icon. To collapse the filter back to its original width, click the icon.

2.1. User Manual 35

slycat Documentation, Release 1.2.0

Fig. 38: All filter values are initially visible the first time a filter is instantiated.

Continuous Filters

The first time a filter is used, the entire range of the variable is visible (drawn in blue), as in Figure 30. The maximum
and minimum variable values are at the top and the bottom of the filter, while the max/min values for the visible
range are shown next to the slider endpoints. These max/min values interactively track the slider endpoints, changing
both the value and position. The excluded portions of the range appear in gray, as demonstrated in Figure 31, where
the maximum value has been dragged down to 268 and the minimum value has been pulled up to 166. In addition
to grabbing and dragging the endpoints, you can drag the visible range as a unit, creating a sliding window of fixed
length. The scatterplot and table are only redrawn when you stop moving the mouse or release the button.

Sometimes the resolution of slider increments can be a problem. The values associated with the set of unique slider
positions may not include the value that you want to use as your threshold. So, the minimum and maximum threshold
values are editable. To edit the threshold extrema, hover over the value (which will then turn orange as in Figure 32),
type in the new value, and hit enter.

On startup, the slider defines a single region of values that are visible. The icon beneath the slider indicates that
this is the current mode of operation. Clicking on that icon inverts the mode, so values in the middle region become

hidden and values at the ends are visible. The icon changes to , the gray end regions become blue, and the central
blue region is drawn in gray. Figure 33 shows the result of inverting the Displacement slider selection shown in Figure
31.

Another type of problem arises when the slider range itself is skewed by anomalous values that are far outside of the
normal range for a variable (say points with values of 10,000, when the normal values are between 0 and 1). This
forces most of the slider’s value range to be empty, with all the points on the extreme ends. To eliminate this value
bias, you can reset the overall slider range by editing the maximum and/or minimum range values at the top or bottom
of the slider. Values outside of the revised range are hidden in the scatterplot and grayed out in the table. To edit the
range extrema, hover over the value (which will then turn orange), type in the new value, and hit enter. In Figure 34,

36 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 39: Figure 30: Entire variable range initially visible in slider.

Fig. 40: Figure 31: Slider after dragging adjusting Displacement max/min values.

2.1. User Manual 37

slycat Documentation, Release 1.2.0

Fig. 41: Figure 32: Editing a slider maximum threshold value.

38 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 42: Figure 33: Invert slider selection to display only values outside the selected range.

we have reset the filter maximum from 455 to 155. The maximum retains an orange background as a reminder that it

has been modified. To reset the value back to the original max/min, click the icon.

Missing Values

When filtering is performed on a variable where there are missing or non-defined data values (e.g. NULLs, NANs,
Inf, -Inf), such as the Horsepower variable in Figure 35, those points corresponding to missing data are eliminated, as
they are undefined and therefore not part of the range. This presents a problem if you want to compare points with

missing data to points from a subset of that variable’s value range. The icon at the bottom of each filter enables the
inclusion of points with missing data relative to that variable into the scatterplot. When a filter is first instantiated, the

missing values are filtered out and the icon is gray. Click to make those points visible, as shown in Figure 36.

The icon acts as a toggle, so clicking will hide those points again.

Axis Controls

There are two mechanisms for selecting variables for the X and Y axes. They can be selected using the X Axis and Y
Axis dropdown lists. Or, they can be selected by clicking on the X or Y icons in the Variable Table column headers.
The icons are found in each column to the right of the variable name. The two mechanisms are linked, so regardless of
which one is used to make the choice, the selection is shown in both. For example, in Figure 37, Weight is highlighted
in the dropdown list and the X icon is darkened in the Weight column of the table. Once the selection is changed, the
corresponding axis is immediately redrawn displaying the name and value range for the new variable. Points are also
re-rendered as each point’s coordinates are changed to reflect the values of the new variable.

2.1. User Manual 39

slycat Documentation, Release 1.2.0

Fig. 43: Figure 34: Resetting slider maximum to increase resolution within slider range.

Fig. 44: Figure 35: Filtering normally excludes points with missing values.

40 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 45: Figure 36: Filtered values plus missing-valued points.

Fig. 46: Figure 37: Selecting the X Axis variable using the dropdown list. Horsepower is used to color-code the
points.

2.1. User Manual 41

slycat Documentation, Release 1.2.0

Point Color

Similarly, there are two mechanisms for selecting the variable for color-coding individual points. Either select the
variable in the Point Color dropdown list, or click on the variable name in the Variable Table column header. The
two mechanisms are linked, so regardless of which one is used to make the choice, the selection is shown in both.
The variable name is highlighted in the dropdown, and the backgrounds of that column’s elements in the table are
color-coded to match the corresponding point’s color in the scatterplot. Once the selection is changed, the points are
re-rendered using the new encoding and the legend is changed to reflect the name and value range for the new variable.
In the image below, the points are color-coded by each car’s Horsepower value. Although the variable name is not
fully visible in the table (we initially display each column at a uniform width, which tends to truncate many of the
names), you can immediately tell which column has been selected for color-coding because the background coloring
of the cells in that column makes it stand out.

Fig. 47: Points color-coded by Horsepower values.

Media Set

If media variables are present in any of the columns of the input data table, a Media Set button will appear to the
right of the Point Color button. Media files are broadly defined. We currently support viewing various image formats,
videos, and STLs (geometry files for a 3D printer). Each media variable in the input data table consists of a column
with a shared file type, though blank entries are permitted within a column (i.e. not all ensemble members are required
to have an image or video for media viewing to be used). Typically, the files in a column share a common theme, such
as images showing the final state of a simulation, or an event-triggered animation, or the geometry of a specific part
at a specific time. In all cases, a media file is described by a URI that provides a full path to a source file. Each URI
must have the format: file://machine_name/absolute_directory_path/filename.ext.

Initially, media retrieval is disabled because the Media Set selection is set to None. Once a media variable has been
selected, hovering over a scatterplot point will retrieve that point’s remote media file as defined by the URI. For the
first remote access, authentication will be required. Hovering provides a convenient means for rapidly examining and

42 Chapter 2. Documentation:

file://machine_name/absolute_directory_path/filename.ext

slycat Documentation, Release 1.2.0

Fig. 48: Figure 38: Media Set Selection of Image1.

comparing outputs generated by in situ visualization codes, such as Catalyst and SpyPlot. Viewers can be repositioned
within the scatterplot by dragging. Each viewer is connected to its associated point in the scatterplot by a line, one
end of which always tracks the viewer position (see Figure 38). For videos and STLs, the viewers include interaction
controls (e.g. play buttons, or rotation axis selectors).

As with Point Color, there are two mechanisms for selecting which Media Set variable to display. Either select a
variable in the Media Set dropdown list, or click on the small square to the right of the variable name in the Variable
Table column header. The two mechanisms are linked, so regardless of which one is used, the selection is shown in
both. As seen in Figure 38, the selected variable name (Image1) is highlighted in the dropdown, and the square to the
right of the variable name is darkened in the column header. Once the selection is changed, hover will reference the
new column’s URIs when retrieving remote files, but currently visible images will not be affected. This allows you
to compare different media variables from one or more simulations. Selecting None (the first choice in the dropdown
list) disables the hover response.

The viewer in Figure 39 shows the set of standard viewer icons in the strip across the bottom of the image. From left

to right, each viewer has a close icon , a download icon , an index row icon , a pinning icon , and a

resize icon . Viewers remain visible while the mouse remains within the viewer boundaries. Either clicking on the

icon, resizing, playing a movie, or moving the viewer acts to pin the viewer in the scatterplot. A pinned viewer

remains visible until your explicitly close it, either by clicking its icon, or by simultaneously closing all pinned
views using the Close All Pins button. To simultaneously retrieve and pin media for a group of points, first select the

points, then select pin in the Selection Action dropdown list. Using the icon within a viewer both pins and shrinks

it to a standard thumbnail size. For arbitrary viewer sizing, press and hold the left mouse button on the icon while

dragging the corner. To download a copy of the media object to your local machine, click the icon.

Note that Slycat™ video functionality is not available for all movie formats. In fact, due to technical issues related to
our web-based delivery, videos must be created in a very specific way to be viewable in Slycat™.

2.1. User Manual 43

slycat Documentation, Release 1.2.0

Fig. 49: Figure 39: Image viewer with close, download, index row, pinning, and resizing icons.

Video Source Files

There is no standardized support for videos between browsers. We have found that the h264 codec in combination
with an mp4 container format is compatible with Firefox, Chrome, and Safari on both Windows and Mac platforms.
In our testing, we have found that initial key frames are frequently lost, rendering the following compressed frames
useless. This requires explicit key frame forcing during movie creation. We use the ffmpeg utility to convert images
into videos. Make sure that your version of ffmpeg was built with the h264 library, since some versions of ffmpeg
don’t include this codec by default.

If you are within Sandia, we provide this custom version of the library on the cluster machines. You can generate
Slycat™ compatible movies as follows:

> module load slycat

If your images are PNGs, they must be first converted to JPG format (ffmpeg won’t complain about the input images
being PNG, but the movie that it generates won’t play). If you already have JPG images, skip this step:

> mogrify -format jpg myImageName.0*

This last step generates the mp4. Don’t forget to enclose the image path in single quotes:

> ffmpeg -pattern_type glob -i '/someDisk/someUser/someDirectoryPath/myImageName.0*.
→˓jpg' -force_key_frames 0.0,0.04,0.08 myMovieName.mp4

Automatic Scaling

The auto-scale button (to the right of Media Set) enables/disables automatic scaling of the scatterplot axes when
points are hidden or filtered out (these two mechanisms are mutually exclusive, see Selection Action and Filtering). As
points are removed, the locations of the remaining points shift to span the available space and the axes are redrawn to
reflect the reduced value range. The mapping between point colors and the values shown in the legend is also modified
to reflect the reduced value range (i.e. the new maximum value is now mapped to the brightest red and the new
minimum value maps to the deepest blue, maximizing the color distinctions between the remaining points). Compare
the scatterplots in Figure 40 and Figure 41 to see the effects of using auto-scaling.

44 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 50: Figure 40: Filtered scatterplot with auto-scaling off. Note that most of the scatterplot is empty.

Fig. 51: Figure 41: The same filtered scatterplot with auto-scaling enabled. The color range is scaled as well.

2.1. User Manual 45

slycat Documentation, Release 1.2.0

This feature is especially useful if a variable’s value range is skewed by a few anomalous points. For example,
imagine a data set where most points have x-coordinates in the range from 0 to 1, but a few points have extreme values
of 10,000. Including the extreme points means that most of the plot consists of empty space, while the majority of
points are drawn on top of one another near the origin. By filtering and rescaling, you can remove the extreme points
and have the remaining points fill the plot. Note that automatic scaling is enabled as the default, indicated by the
darkened state of the button (Figure 41).

Selection Action

Selected points (see Selecting Points) create a set that is used as the designated input for any of the group operations
listed in the Selection Action dropdown, as shown in Figure 42. Since filtering and hide/show selections are mutually
exclusive within the Slycat™ interface, if there are any filters enabled (visible), all of these actions, except Pin, will
be disabled.

Fig. 52: Figure 42: Selection Action dropdown list of operations on selected groups of points.

Hide removes the selected points from the scatterplot and yellows out the associated rows from the table. The points
are still selected, but they are no longer visible, which is why their rows are colored yellow instead of white. If
automatic scaling is enabled (see Automatic Scaling), the remaining visible points in the scatterplot will be shifted and
recolored to reflect any changes in the value range.

Hide Unselected performs the same operation on the set of points that are not selected, thereby reducing the visible
points to just the selected set.

Show restores the last hidden selection to visibility, both in the scatterplot and in the table. If the selection has been
lost by clicking elsewhere within the scatterplot, Show will not be able to restore the previously hidden set, since the
selected set is now empty. For the same reason, there is not a function to restore points hidden using Hide Unselected.
However, the Show All button (to the right of the Selection Action dropdown) can be used to make all hidden points
visible again.

Using the currently selected media variable, Pin retrieves and pins items for each of the points in the selection set
(only if visible), performing the equivalent of a group hover and pin operation. This is much more efficient than doing
individual retrieval when there are large numbers of runs to compare. Note that the images may be stacked on top of
one another if the associated points are coincident, as is the case in Figure 43. However, you can separate the images
by dragging them apart, as shown in Figure 44.

Show All

The Show All button restores all points that were hidden using Selection Action to visibility. Show All is disabled
whenever a filter is present, so it cannot be used to make filtered points visible again.

46 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 53: Figure 43: Four selected runs are coincident in the scatterplot, so the associated pinned images are
stacked.

Fig. 54: Figure 44: Separating pinned images by dragging. Note that the legend can also be repositioned by
dragging.

2.1. User Manual 47

slycat Documentation, Release 1.2.0

Close All Pins

The Close All Pins button closes all pinned media in the view. It provides a quick method to clear a Parameter Space
model of all viewers.

Video Synchronization

Beyond the video functionality described earlier (see the Media Set section), Slycat™ provides additional fine-grained
and group-based video controls. Once the first video is pinned, the interface shown in Figure 45 will appear in the

model-specific controls to right of the Download Data Table icon. These video controls will remain visible until
all videos are closed. For a single video, these global controls provide single step accuracy in advancing or rewinding
the animation, which is not possible using the limited controls of an individual viewer. However, the larger goal of
this interface is to enable synchronized playback of multiple videos from a single set of controls.

Fig. 55: Figure 45: Video controls: enable video synch, current video location (seconds from start), go to first
frame, step back a frame, play, step forward a frame, and go to last frame, respectively.

From left to right the controls are as follows: the video synchronization button , a numeric field providing the

current video location in seconds from the video start, a button to go to the start of the video , a button to step

backward by one frame , play /pause buttons (the icon changes to pause once play is pressed), a button

to step forward by one frame , and a button to go to the end of the video .

The video synch button is a toggle that enables/disables shared control of multiple videos. The background color of

the icon shows the state of the synchronization. The background is gray when it is enabled , and white when it is

disabled . When video is synched, the playback buttons operate on all pinned videos. When synch is disabled, the
playback operates only on the current video. The current video is highlighted by drawing a shadow behind it, making
it appear to float above the other videos, such as the middle video in Figure 46. At all times, the video location field
shows the current value of the video’s elapsed playback time (note that this is not the same as the simulation time
stamp for a particular frame). You can directly edit this field to align all videos to the frame that is closest to a specific
time of interest in the playback.

Adding Text

To add text, click the note icon on the right end of the controls. A text window will popup. The intent was to

provide two types of annotation: notes and titles. The icon in the upper left toggles between and to switch

between text sizes, as shown in Figures 47A and 47B. The icon increases the text size to generate a title. The
icon decreases the text size back to a font more suitable for notes. The text window can be closed and resized using

the and icons, respectively. The icons are only visible when the mouse is in the window. Figure 48 provides
an example showing both types of annotation. Notes in combination with bookmarks can be used to draw the attention
of project members to discoveries or generate explanatory visualizations that can be self-contained.

48 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 56: Figure 46: Three synched videos, where the middle video is the current video.

Fig. 57: Figure 47A: Text window for adding notes.

Fig. 58: Figure 47B: Text window for adding titles.

2.1. User Manual 49

slycat Documentation, Release 1.2.0

Fig. 59: Figure 48: Example of adding text as both a title and a note.

Variable Table

The Variable Table is the same as the table in the CCA model (see Variable Table) with one small difference. ‘X’ and
‘Y’ icons to the right of variable names in the column headers provide an alternate method to the dropdown lists for
selecting the scatterplot axes.

2.1.4 Timeseries Model

The Time Series model was originally developed to evaluate similarities between waveforms generated by electrical
circuit simulations. However, this model can be used more generally to compare any set of time series data, so long
as the starting and ending times for each sequence of values are the same. Although the time series inputs do not need
to be sampled identically, our initial step is to resample since the analysis ultimately requires corresponding samples
for comparison. Points in each sequence are binned, with the bin size calculated by dividing the time range into equal
intervals. The values of the points within each bin are then averaged. The underlying assumption is that there are
enough samples in the sequence to have at least one sample per bin. The number of bins is a user-supplied parameter
to the analysis.

Slycat™ calculates a table of the distances between each pair of resampled time series by summing the differences
between corresponding points. The distance table is used to create an agglomerative, hierarchical model of similarities
between the sequences. The resulting model is a tree, in which the set of time series contained within each subtree
are more and more similar as successive subtrees get closer to the leaves. Because our distance metric was developed
for electrical simulation data, both amplitude (y value) and timing (x value) must match for a pair of sequences to be
regarded as similar (i.e. identical shapes that are shifted in time are not seen as similar).

50 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Time Series Data

Slycat™ accepts two different time series data formats, which we will call Xyce and CSV. Each input format consists
of two parts, a table file describing the entire ensemble, and a time series data file for each simulation in the ensemble.
Like the CCA and Parameter Space models, the table is at the heart of the model. For each simulation (for each row in
the data table), there must be a file with time series data. Within each of these time series files are sequences of values,
sampling one or more output variables over the course of the simulation. It is not necessary that each simulation write
the same number of samples into their time series files, but it is required that each simulation have a corresponding
data file with matching output variables that cover the same time range.

Xyce Format File Structure

The Xyce format consists of Xyce-generated time series files stored within a fixed directory hierarchy. The hierarchy is
rooted within a single high-level directory where there must be a dakota_tabular.dat file (providing the data table). It is
not that the file must be named dakota_tabular.dat, but rather the file format must correspond to the dakota_tabular.dat
files generated by Dakota. Additionally, a set of subdirectories (one per run) must be located in the same directory
as the dakota_tabular file. These subdirectories should all be named using a template like workdir.n, where n is the
simulation number. Within each subdirectory, there must be a time series file generated by Xyce that is formatted as
a .prn file. The time series files must all be named identically (the subdirectory defines which simulation generated
them), and each file must contain a shared set of time series variables (columns with matching headers within each of
the .prn files).

CSV Format File Structure

The CSV format (such as heartbeat.dat files produced by Sierra, or .csv outputs from Catalyst), is less structured than
the Xyce format. The individual time series files need not be stored in the same directory hierarchy as the data table,
nor does the directory structure need to follow any structure or naming conventions. Instead, the data table is a CSV
file, which contains a column of URIs providing full paths to each of the time series files, which must also be CSV
files (no .prn files). Each URI must have the format: file://machine/absolute_directory_path/timeseries_filename.csv.

Time Series Files

Whether we are using .prn files or CSV files, both formats are essentially tables in which each column is a separate
variable and each row is a set of concurrent samples for each of the variable columns. The first line of a time series
file contains headers, which provide the names of the time series output variables. Note that in a CSV file, we expect
to see only a single row of header information consisting of the column names (some physics codes output two rows
of header information, with the variable names in the first row and the units in the second row – this is not a legal CSV
format). At least one column must be a time value (typically the first column).

If your data is not currently in one of these two formats, Excel can be used to create CSV files from most common
table formats. Note that if output metrics have been created separately in a post-processing step, they will need to be
integrated with the inputs to form a single file prior to model creation.

HDF5 Intermediary Format

In the time series creation wizard, both formats are rewritten as HDF5 files in a temporary Slycat™ directory (we
have found that this significantly speeds up our processing compared to working with the originally-formatted files).
If you opt to keep these HDF5 files, they constitute a third data format that the wizard will accept, though be aware
that HDF5 files created through other means are not interchangeable since their internal structures will be different.

2.1. User Manual 51

file://machine/absolute_directory_path/timeseries_filename.csv

slycat Documentation, Release 1.2.0

Creating a Time Series Model

Creating a Time Series model is more complicated than the models that we have described in previous sections. This
is due to the size and structure of the data, combined with the computationally intensive nature of the analysis. The
data is stored in multiple files, typically in multiple directories. This data complexity and scale compels the use
of parallel processing to reduce the model creation time. Unfortunately, our cluster’s batch environment increases
complexity through the need for additional High Performance Computing (HPC) parameter choices, uncertain wait
times in the job queue, and potentially long processing times. All these factors are at odds with an interactive interface.
Consequently, our time series wizard is designed to collect all the necessary information, then autonomously launch
the analysis and finish the model creation. You are free to do other things while it completes, although we do provide
a means to remotely check on the status of your job through the Slycat™ interface.

To access the wizard, go to your project page, click on the green Create button and select New Timeseries Model from
the dropdown list. A dialog for walking you through the process will then pop up, as shown below. The first page
identifies the format of the time series data (see Time Series Data above) and the location of the ensemble’s table file.
The assumption is that time series data is large and difficult to move, so it will be located on the same remote HPC
machine where it was generated. Consequently, we do not provide a Local option, as we do for other model types.

Fig. 60: Initial dialog screen in Timeseries model creation wizard.

Find Data Dialog

Using the radio buttons, select the data input type. Next, select a remote host from the Hostname dropdown. Unlike
CCA or Parameter Space, only hosts included in the dropdown list may be used. This is because time series analysis

52 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

requires parallel job launching functionality found in the Slycat™ agent, which must be running on the remote ma-
chine. Although the Slycat™ agent assists you in remotely submitting the analysis job to the cluster queue, you will
be running the job under your own user credentials. Consequently, the host must be a machine on which you already
have a user account. Enter your username and password into the associated fields. Hitting the Enter button after typing
in your password will both log you into the remote machine and take you to the next screen in the wizard. If you have
recently accessed the selected host through Slycat™, the Username and Password fields will not be shown. This is
because Slycat™ maintains remote sessions for a fixed period of time after your initial login to reduce the number of
login requests. In this case, click the Continue button to advance the wizard.

Fig. 61: Figure 49: Initial dialog to identify data set type and where it is located.

Time Series Parameters Dialog

The next screen of the wizard will depend on which data format you selected. If you selected Xyce or CSV, the next
screen will be a file browser on the remote host. Navigate to the location of the ensemble data table (a dakota_tabular
file within the directory hierarchy described above for Xyce inputs, or a CSV file containing full paths to each time
series file for CSV inputs). Navigation is identical to that described in the earlier section on Remote Files. Click on
the data table file in the remote file browser to select it, then click Continue. If you selected HDF5, the wizard skips
this step since there is no need to select a table file.

For all three input types, the next step is setting the parameters to be used for binning and clustering the time series.
Xyce, CSV, and HDF5 have slightly different interfaces for this step, which are shown in Figure 50, Figure 51, and
Figure 52, respectively.

The CSV screen includes two additional fields that are not needed by the other formats, Table File Delimiter and
Timeseries Column Name. Table File Delimiter allows you to use other delimiters besides commas in the data table,

2.1. User Manual 53

slycat Documentation, Release 1.2.0

Fig. 62: Figure 50: Timeseries Parameters for Xyce data sets.

Fig. 63: Figure 51: Timeseries Parameters for CSV data sets.

54 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 64: Figure 52: Timeseries Parameters for HDF5 data sets.

such as tabs or spaces. Tabs are difficult to specify because the web interface uses tabs to move between fields, but if
you cut-and-paste a tab into the field, enclosing it with single quotes, Slycat™ will accept a tab-delimited table. To
designate a space as a delimiter, enclose it with single quotes, since otherwise the field is interpreted as being empty.
Commas do not require quotes.

Since CSV data tables can have multiple columns of time series data (e.g. if you sampled a set of variables over time at
various locations within the simulation), the Timeseries Column Name identifies which time series data set to analyze.
Type in the column name, taking care to exactly match the header as it appears in the table.

The remaining parameters are shared by all three input types. Timeseries Bin Count controls how finely the time series
is sampled. The resulting binned sequences are used for calculating similarities and the reduced representations are
drawn in the model visualization. Generally, bin counts between 500 and 1000 produce a reasonable tradeoff between
speed and accuracy. Although increasing the number of bins increases both the analysis and rendering times, a greater
bin count also helps preserve spikes or other localized features that could be lost when using a smaller number.

The Resampling Algorithm dropdown has two options. Both algorithms use a uniform set of bins, with the choice be-
tween using uniform piecewise linear approximation or uniform piecewise aggregate approximation as the resampling
method. Uniform piecewise aggregate approximation is the default.

The Cluster Linkage Measure dropdown selects the metric used when evaluating distance between groups of elements.
There are four choices:

• single: Nearest Point Algorithm

• complete: Farthest Point Algorithm

• average: Unweighted Pair Group Method with Arithmetic Mean (UPGMA) Algorithm

• weighted: Weighted Pair Group Method with Arithmetic Mean (WPGMA) Algorithm

Single evaluates the distance using the closest elements/minimum linkage; complete uses the farthest ele-
ments/maximum linkage; average uses the distance between the group averages; and weighted uses the values from
the distance matrix. Average is the default. We are using SciPy to perform the clustering, so a more complete descrip-
tion of the linkage choices can be found at https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.
linkage.html.

2.1. User Manual 55

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html

slycat Documentation, Release 1.2.0

The Cluster Metric currently only has a single choice, Euclidean, so it cannot be changed (hence the field is grayed
out). This field is provided to inform you that we are using Euclidean distances in our algorithms.

Once you are satisfied with these parameter choices, click Continue to go to the next screen.

High Performance Computing Parameters Dialog

The HPC Parameters screen is specific to your institution. Figure 53 shows the parameters for Sandia’s cluster systems.
Other than differences in the list of steps shown along the top, the same screen is used for all three data formats (Xyce,
CSV, and HDF5).

Fig. 65: Figure 53: HPC Parameters for Sandia clusters.

WCID stands for Workload Characterization ID, which is required for job submission on the clusters. Because Slycat™
uses parallel processing to speed up Time Series model creation, users are required to have obtained a WCID prior to
creating a Time Series model. Your WCID is associated with an Strategic Management Unit/Program Management
Unit (SMU/PMU), which is used to specify the Partition or queue-name. At Sandia, the choices are nw, ec, dsa, ihns,
ldrd, cee, viz, or viz batch).

Time Series Model Visualization

Our examples in this section come from an ensemble of 250 electrical circuit simulations, where our time series
outputs are current and voltage variables sampled over time. A Time Series model of this ensemble is shown in Figure
54. The model provides three linked views, each providing a different level of abstraction. The Dendrogram View in
the upper left provides a high-level view that groups waveforms by similarity. In the upper right, the Simulation View
displays a line plot for each ensemble member. The plots are superimposed in a shared coordinate space to facilitate

56 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

comparisons. The lowest level view is the Variable Table, which provides the raw data values from the original table
file. It is drawn across the bottom of the display and may be scrolled both vertically and horizontally if the number
of rows or columns exceeds the available space. Although the Variable Table may contain columns with scalar output
metrics, or columns of file URIs that would be categorized as being neither input nor output, the ingestion wizard
assumes all table columns are inputs and colors them green.

Fig. 66: Figure 54: Time Series model with Dendrogram View in upper left, Simulation View in upper right,
and Variable Table below.

The Dendrogram View controls visibility of ensemble members in both the Simulation View and the Variable Table.
Selections can be made in any one of the views, after which they are propagated to the other two. Color-encoding is
shared by all views.

The model specific controls for a Time Series model are shown in Figure 55. Within each time series file, multiple
output variables may be present. Each variable is input as a column of values, and each row provides the values for
all variables at a single instant in time. Each time series variable generates a distinctly different dendrogram and has a
set of unique plots. The Outputs dropdown provides a list of the time series variables so you can select which one is
currently being displayed in the Dendrogram View and the Simulation View.

Fig. 67: Figure 55: Time Series model specific controls. The Outputs dropdown switches the views between
different time series variables. Line Color selects from the scalar input variables for color-coding the lines. The
Download Table icon enables download of the entire Variable Table or subsets thereof. Colors selects the color
theme. The latter two functions are shared by all model types.

To facilitate discovering relationships between input parameters and groups of output plots, it is often useful to color-
code the lines by input variable values. Select a color-coding variable either through the Line Color dropdown or by
clicking on a table column header (see Color-Coding Lines below).

2.1. User Manual 57

slycat Documentation, Release 1.2.0

Dendrogram View

The Dendrogram View displays a tree that clusters line plots from a single temporal variable by similarity. The analysis
begins by calculating distances between each pair of time series vectors, an O(n2) calculation. Then the distance matrix
is used to build the dendrogram using agglomerative clustering. Each time series output variable generates a different
tree.

Fig. 68: Figure 56: Dendrogram tree level compression.

The dendrogram is drawn with the root on the left and the leaves on the right. To reduce visual clutter, the tree is not
drawn at full resolution at every level down to the leaves. Instead, only the first four levels of the tree are initially
rendered (as shown in Figure 56), with the last level on the right consisting of collapsed subtrees for the remaining
sections of the tree down to the leaves. The subtrees are represented by purple triangular icons, each labeled with the
number of nodes in its subtree. Non-collapsed nodes in the tree are drawn as purple dots.

Dendrogram Expansion/Contraction

The expansion or contraction of each node is individually controlled through the ‘+’ or ‘-‘ icons that appear to the
left of each node, respectively above or below the line connecting the node to its parent. In Figure 57, the subtree
with 58 nodes in Figure 56 has been expanded by clicking the ‘+’. Each expansion adds two levels of the tree to the
dendrogram. Note that leaf-level nodes are drawn as dots.

To expand a subtree all the way down to the leaves in a single action, click on the subtree triangle itself. In Figure
58, the subtree with 9 nodes at the top of the dendrogram in Figure 56 has been expanded to the leaf level with this
one-click operation. Caution should be exercised when doing a full subtree expansion for subtrees over 20 or so nodes,
since the dendrogram can become cluttered and largely unintelligible. Figure 59 demonstrates the results of clicking
on the subtree with 110 nodes at the bottom of the dendrogram in Figure 56.

The operation of collapsing nodes reduces all of the nodes below the designated node (the node whose ‘-‘ icon is
clicked) into a single subtree, regardless of the number of levels that are currently visible. In Figure 60, the bottom

58 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 69: Figure 57: Expansion of second subtree from the top (previously shown as the subtree with 58 nodes in
Figure 56). Each expansion adds two additional levels.

2.1. User Manual 59

slycat Documentation, Release 1.2.0

Fig. 70: Figure 58: Subtree with 9 nodes expanded to leaf level by clicking triangular subtree icon.

Fig. 71: Figure 59: One-click expansion of subtree with 110 nodes.

60 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

half of the dendrogram in Figure 57 has been collapsed into a single subtree with 166 nodes. This ability to expand and
contract sections of the dendrogram controls the level of detail, maximizing the rendered portion of the tree around
areas of interest.

Fig. 72: Figure 60: Collapsed subtree that combines the 4 subtrees from the lower half of the dendrogram in
Figure 57.

Dendrogram Visibility Filtering

The dendrogram also acts as a visibility filter to select which lines are shown in the Simulation View and which rows
appear in the Variable Table. Click on the purple dot representing any node (or the dot at the tip of a subtree triangle) to
restrict visibility to the leaf nodes associated with that subset of the tree. Non-visible nodes are grayed out. Figure 61
and Figure 62 show the results of limiting visibility to the subtrees of the upper and lower halves of the dendrogram,
respectively. These examples clearly demonstrate that the upper and lower subtrees are grouping the results generated
by input differences in the variable x23 into two categories. Inputs of -1 (color-coded blue) start higher on the y-axis
and escalate slowly over a longer time period before peaking, while 0 and 1 (white and red, respectively) start lower
on the y-axis and peak more rapidly. These two groups have distinctly different characteristics, which the analysis has
captured.

As shown in Figure 63, more complex visibility selections can be constructed through a combination of dendrogram
expansion operations and using control-click to add individual nodes to the visible set. Control-click functions as a
toggle, so it flips the visibility state for any node with each click. The paths from the root to all visible nodes are darkly
drawn, while the remaining paths, though still visible, are grayed out.

2.1. User Manual 61

slycat Documentation, Release 1.2.0

Fig. 73: Figure 61: Visibility is limited to nodes in top half of dendrogram by clicking the upper second-level
node. Table order is sorted by the values of variable x23 (not in dendrogram leaf order, shown by lavender
graph icon in dendrogram lower left).

62 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 74: Figure 62: Visibility is limited to nodes in bottom half of dendrogram by clicking the lower second-level
node. Table order is in default dendrogram leaf order (shown by purple graph icon in lower left of dendrogram).

Sparklines

To the right of the subtree icons and leaf nodes are small graphs, called sparklines1, providing a high-level representa-
tion of the general shape characteristics of the associated node/subtree. For a node, its sparkline is its time series plot
rendered into a thumbnail image. For a subtree, its sparkline is the sparkline of the node closest to the centroid of the
group in the subtree.

Sparklines for subtrees are drawn in black. Sparklines for leaf nodes are color-coded to match the line color of the
corresponding run in the Simulation View, and the cell color of the corresponding simulation in the Variable Table.
Beyond color-coding being linked between all three views, selection is also linked. Selection of a line (or lines) in
the Simulation View or Variable View will highlight (darken) the sparklines of the associated subtrees and/or nodes
to reveal their location within the hierarchy, as shown in Figure 64. Alternatively, clicking on a sparkline performs
a group operation that selects the associated node set, highlighting the corresponding lines in the Simulation View,
and the corresponding rows in the Variable Table. Figure 65 shows how clicking the sparkline for the 8 node subtree
results in highlighting the eight associated lines and rows in the other two views.

Highlighting and visibility are independent functions that may be combined. For example, in Figure 66, the set of runs
that failed to peak are selected in the dendrogram. Highlighting is used to distinguish the runs in the subtree with 8
nodes from the subtree with 9 nodes. The 8 node subtree consists of runs that took longer to rise and had lower overall
values than the 9 node group. Note that these differences are visible even in the sparklines for each subtree.

1 Tufte, E., Beautiful Evidence, pp. 46-63, Graphics Press, Cheshire, Connecticut (2006).

2.1. User Manual 63

slycat Documentation, Release 1.2.0

Fig. 75: Figure 63: Complex visibility selection made through a combination of dendrogram expansion and
using control-click to add nodes to the visible set. Paths from the root to the visible nodes are darkened, while
the other paths are grayed out.

Fig. 76: Figure 64: Sparkline highlights corresponding subtree for selected line in Simulation View,

64 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Fig. 77: Figure 65: Clicking the sparkline for the 8-node subtree highlights the corresponding set of lines and
table rows.

Fig. 78: Figure 66: Select visibility combined with highlighting to explore differences in the set of runs that did
not peak.

2.1. User Manual 65

slycat Documentation, Release 1.2.0

Time Series Simulation View

The Simulation View is a line plot, where each line represents an ensemble member. The X axis is the shared range
of temporal values between simulations, and the Y axis is the time series variable value. The lines are color-coded by
using the value of a selected scalar variable (see Color-Coding Lines) to potentially reveal correlations between inputs
and groups of similar output plots, as demonstrated by the examples of the previous section.

Line visibility in the Simulation View is controlled by selecting nodes and subtrees within the dendrogram (see Den-
drogram View). Moving the mouse over the line plots, Slycat™ interactively provides feedback showing which line is
being pointed at through a combination of highlighting the focus line and dimming all the other lines. Left-clicking on
the line selects the simulation in all views, highlighting the sparkline next to the associated subtree in the dendrogram,
highlighting the line in the line plot, and highlighting the associated row in the table. Multiple lines can be selected
using control-click to toggle the selection state of lines (i.e. holding the control key while clicking adds unselected
lines to the selection set, or removes previously selected lines from the set). Control-click selection is available in
all three views, operating on sparklines, line plots, or table rows. To clear the current set of selections, click in the
background of the Simulation View in any area away from the lines.

Fig. 79: Time Series model with Simulation View in middle upper right, and Legend on the far right.

Color-Coding Lines

The first time a model is rendered, the lines are colored by their index number. There are two mechanisms for changing
the variable selected for the color-coding: clicking on the column header in the Variable Table or selecting a variable
from the Line Color dropdown list. Irrespective of the interface used, changing the color-mapping variable will lead
to changes in all three views and the legend, including: recoloring the line plot using the new variable’s values,
coloring the cell backgrounds in that variable’s table column, returning the cell backgrounds of the previously selected
variable’s column to the default color (green, lavender, or white depending on whether the variable is an input, output,
or neither), recoloring any sparklines that are leaf nodes in the dendrogram, and relabeling and redefining the value
range in the Legend (see below).

66 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Legend

To the right of the line plot is the Legend. The Legend is in its own view, which can be resized or closed altogether.
The Legend displays information about the current color-coding variable, including its name, range of values, and the
mapping between values and colors. The color palette is defined by the current theme (see Color Themes).

Time Series Variable Table

The Variable Table is much the same as the table in the CCA model (see Variable Table). However, there is one
additional option for row ordering in the table, which we refer to as dendrogram ordering (i.e. if the dendrogram were
expanded out to the leaf level, the simulations associated with the rows in the table would correspond to those of the
dendrogram’s leaves). This is the default table order when the model is first visualized. The row ordering choice is
explicitly shown by the color of the graph icon in the lower left corner of the Dendrogram View. When the graph icon
is purple, as in the first figure below, the table is in dendrogram order. When the graph icon is lavender, as in the
second figure below, the table is in sorted order. Clicking on the graph icon restores the table to dendrogram order,
and returns the icon to purple. Sorting any of the table columns replaces this ordering with the sorted order, and
changes the icon to lavender.

Fig. 80: Variable Table is in dendrogram order.

2.1.5 Acknowledgements

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engi-
neering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This user manual was
approved for release as SAND2018-0620 R.

2.1. User Manual 67

slycat Documentation, Release 1.2.0

Fig. 81: Variable Table is in sorted order.

2.2 Design

Because Slycat™ is a system for analysis of data ensembles, and ensembles typically include orders of magnitude
more data than individual simulation runs, managing data movement is an integral part of the Slycat™ design. Ideally,
we want to perform one-time computation on the host where data lives so that only an analytical model – typically
orders of magnitude smaller than the original data – is moved across the network to the Slycat™ host. This leads to
the following Slycat™ architectural design:

68 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

In the above case, large data on an HPC platform is analyzed in-place to produce greatly reduced model artifacts
that are stored by the Slycat™ web server. Later, these artifacts are delivered – incrementally and on-demand – to
interactive clients.

However, it isn’t always possible to reduce the analytical workflow to an ideal, reduced-size model. For example,
users may wish to interactively browse through the raw outputs of an ensemble of simulations. For this case, Slycat™
provides a remote “agent” process that can access data on an HPC platform, packaging and compressing it on-demand
for live delivery to interactive clients:

As an example, this mode of interaction is ideal for browsing through output image series on a remote server - in
addition to delivering individual images, the agent can compress images on-the-fly into video streams for live playback.

2.2. Design 69

slycat Documentation, Release 1.2.0

2.3 Tutorial

2.3.1 Install Slycat

As a convenience, we provide a Docker image that has Slycat and all its dependencies preinstalled. Using the Slycat
image, you can quickly begin exploring Slycat, try some tutorials, and run small analyses on your own data. Eventually
you might want to Setup Slycat Web Server on your own hardware to perform large-scale analyses.

Install Docker

Installation

Because Docker uses Linux-specific kernel features, you will need to run Docker in a virtual machine (VM) on your
Mac or Windows environment. Fortunately, Docker makes this relatively easy:

• Download the latest docker for your specific environment from https://www.docker.com/

• follow the instruction for installing docker on your machine

With docker installed and running and the DOCKER_* environment variables set, the rest of the install instructions
are platform-independent.

Note: If you’re using Docker behind a proxy, you’ll need additional configuration so it can access the network to
download the Slycat image:

• To configure proxy information, ssh into the Boot2Docker VM:

$ docker-machine ssh default

• Create / modify the /var/lib/boot2docker/profile file to set proxy info:

$ sudo vi /var/lib/boot2docker/profile

• Add the proxy info using protocol://host:port, for example:

export HTTP_PROXY=http://your.proxy.name:80
export HTTPS_PROXY=http://your.proxy.name:80

• If your site uses SSL interception, you will need to get a copy of the interception certificate, and append it to
/etc/ssl/cacerts.pem:

$ sudo vi /etc/ssl/cacert.pem

• Restart the Docker service and exit the Boot2Docker VM:

$ sudo /etc/init.d/docker restart
$ exit

Warning:

• If your site uses SSL interception, you must append the certificate to /etc/ssl/cacerts.pem and restart the
Docker service before downloading images.

70 Chapter 2. Documentation:

http://www.docker.com
https://www.docker.com/
http://www.docker.com

slycat Documentation, Release 1.2.0

Download the Image and Create a Container

Now that you have the Docker daemon running and DOCKER_HOST set to connect to it, you’re ready to download
the Slycat image and create a container:

$ docker run -d -p 2222:22 -p 80:80 -p 443:443 --name slycat sandialabs/slycat-
→˓developer

Docker will begin downloading the sandialabs/slycat image, and will create a container with the name slycat (you will
use this name as a convenient way to reference the container in subsequent commands). The Slycat server will begin
running as soon as the download is complete. Leave the container running for the remainder of these tutorials.

Warning: A new image is currently being created so the image has to currently be built from scratch via build.py
in the slycat github repi /open-source-docker/docker/open-source-build/build.py

Connect to Slycat with a Web Browser

Open a web browser and point it to the Slycat server at https://<docker host ip>

• If you’re running the Slycat container on a Linux host, this will be https://localhost.

• If you’re running the Slycat container using boot2docker on another platform, this will be the IP address returned
by:

$ docker-machine ip

The VM's Host only interface IP address is: 192.168.99.100

• The browser will complain that the server certificate is untrusted. This is because we use a self-signed certificate
for the Docker container. Follow your browser’s procedures to temporarily trust the connection.

• When prompted for a username and password, enter slycat for both.

• The Slycat Projects page opens in the browser.

Next Steps

• That’s it! Now that you’re up-and-running, it’s time to Create a CCA Model.

2.3.2 Create a CCA Model

In Slycat, we perform an analysis by ingesting data and creating a model. One type of Slycat model is Canonical
Correlation Analysis (CCA), used to model relationships between a set of input and output metrics. Before creating a
CCA model however, we must create a project, which is used to organize and control access to models.

Create a Project

• With your web browser still pointed to the Slycat Projects page from the previous section, click the Create
dropdown menu on the Slycat navbar, choose New Project, enter “MyProject” as the project name in the wizard
that appears, and click Finish.

• The browser switches to a separate page for the new project.

2.3. Tutorial 71

https:/

slycat Documentation, Release 1.2.0

Generate a CCA Model

• In the new model page, click the Create dropdown menu again, and choose New Remote CCA Model. Remote
CCA is an analysis performed on a file retrieved from a host other than (remote to) the Slycat web server.

• In the wizard that appears, enter “MyCCA” as the model name and click Next.

• We are going to load a file that happens to be located on the same host as the Slycat server (“localhost”), but
could be located on any host that’s reachable from the Slycat server over ssh. In the wizard, choose localhost in
the Hostname dropdown and enter username slycat and password slycat, and click Next.

• The remote file browser appears, displaying the filesystem of the host you chose in the previous step. Navigate
to the /home/slycat/src/slycat/data directory, then double-click cars.csv. This file contains data describing 406
different types of automobile in CSV format.

• A list of the variables (columns) from the uploaded file appears, along with two columns of checkboxes, allowing
you to designate each variable as in input, an output, or neither. Use the checkboxes to select “Cylinders”,
“Displacement”, “Weight”, and “Year” as inputs, and “MPG”, “Horsepower”, and “Acceleration” as outputs.
Uncheck “Origin”.

• Leave the “Scale inputs to unit variance.” checkbox checked, and click Finish.

Wait for Model Completion

The time to compute models can vary from seconds to hours, depending on the complexity of the model and the data.
For this reason, Slycat computes models in the background, allowing you to:

• Continue interacting with existing projects and models.

• Create more than one model at a time.

This example is very small, so it should complete in a few seconds. You can jump to the new model by clicking the
“You can check on it here” link in the final page of the wizard. Or, you can close the wizard, and you will see the new
MyCCA model listed on the project page, where you can click on it to open it.

View a CCA Model

• The bottom half of the model page features a table containing the raw data used to compute the model. Input
variables are color-coded green, output variables are color-coded purple, and unused variables are color-coded
white.

• The upper-left corner of the page contains the CCA table, a high-level overview of the CCA results including
statistical significance measures and bar-plots for each input and output variable over three CCA components.

• The upper-right corner of the page contains a scatterplot detailing how well each individual observation in the
raw data fits the currently selected CCA component.

Interact with a CCA Model

• Click a component name (“CCA1”, “CCA2”, or “CCA3”) in the CCA table to select that component, displaying
its bar plot and updating the scatterplot.

• Click variable names in the CCA table or the raw data table to color code observations with that variable.

• Hover over columns in the CCA table and the raw data table to reveal sorting widgets.

• Click observations in the scatterplot to highlight the corresponding entry in the raw data table.

• Click and drag in the scatterplot to rubber-band-select multiple observations.

72 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

• Click rows or shift-click ranges of rows in the raw data table to highlight corresponding observations in the
scatterplot.

Next Steps

Now that you’ve created your first CCA model it’s time to Create a Timeseries Model.

2.3.3 Create a Timeseries Model

The Slycat Timeseries Model provides time series analysis based on clustering and comparative visualization of wave-
forms. However, unlike Creating a CCA Model, you can’t upload data for a Timeseries model using your web browser.
Instead, you’ll use one Python script to synthesize some time series data in a format suitable for use with Slycat, and
a second script to compute the model and push it to the Slycat Web Server. This will demonstrate how Slycat’s REST
API can be used to control Slycat programmatically, so you can transform and upload your data using any language
that supports HTTP networking.

Generate Timeseries Data

• For this example we’ll ssh into the Slycat Docker container, where the scripts to be run are already installed.
Normally, you would run these scripts on the system where your data was located:

$ ssh slycat@<docker host ip> -p2222

In this case, substitute your docker host IP address. If you’re running docker on a Linux host, this will be localhost.
On systems using Boot2Docker, it will be the IP address returned by:

$ boot2docker ip

When prompted, enter password slycat.

• Switch to the Slycat source code directory containing the sample client scripts:

$ cd src/slycat/web-client

• The script for synthesizing data is designed to run in parallel, so start some parallel worker processes in the
background:

$ ipcluster start --daemonize

• Synthesize some time series data, organized for use with Slycat:

$ python slycat-create-sample-timeseries-hdf5.py

• The script creates a sample-timeseries directory and populates it with a set of random input variables and ten out-
put time series, each containing two variables (additional command line parameters are available to synthesize
data of arbitrary size).

Compute a Timeseries Model

• Now that you have some sample data, run:

$ python slycat-create-timeseries-model-from-hdf5.py --no-verify sample-timeseries

2.3. Tutorial 73

slycat Documentation, Release 1.2.0

and enter the password slycat when prompted (this script also runs in parallel, using the workers you started
previously):

slycat password:
INFO - Storing clustering parameters.
INFO - Storing input table attribute 0
INFO - Storing input table attribute 1
INFO - Storing input table attribute 2
...
INFO - Your new model is located at https://localhost:8092/models/...

View a Timeseries Model

• Point your web browser to the Slycat home page at https://<docker host ip>, if it isn’t already.

• In the Slycat navbar at the top of the page, you should see a gray status dropdown containing two numbers
separated by a slash. Those numbers are the number of models being computed, and the number of recently
completed models, respectively.

• Click on the status dropdown to see a menu containing an entry for all in-progress and recently completed
models.

• Wait for the sample-timeseries model to be a completed (a green check appears to its left), if it hasn’t already.

• Click the sample-timeseries entry in the status dropdown, and the browser opens the new model page.

• At the top of the page there is a list of output variables.

• At page left is a hierarchical clustering of the output variable timeseries, displayed as a dendrogram.

• At page right the raw output timeseries are plotted.

• At the bottom of the page is a table containing raw input data.

Interact with a Timeseries Model

• Click on an output variable name at the top of the page to select that output, updating the rest of the interface.

• Click variable names in the raw input table to color timeseries using that variable.

• Click individual raw input table rows or shift-click ranges of rows to highlight the corresponding timeseries.

• Click nodes in the dendrogram to display only those waveforms.

• Double-click nodes in the dendrogram to expand / collapse their children.

Next Steps

Next, let’s move on to Create a Parameter Image Model.

2.3.4 Create a Parameter Image Model

The Slycat Parameter Image Model associates images with feature vectors, and would typically be used to explore
the input parameters for an ensemble of image-generating simulations. For this type of model, you’ll use one Python
script to synthesize image and parameter data in a format suitable for use with Slycat, then import the data using a
web browser user interface.

74 Chapter 2. Documentation:

https:/

slycat Documentation, Release 1.2.0

Generate Image Data

• If you haven’t already ssh into the Slycat server:

$ ssh slycat@<docker ip address> -p2222

• Switch to the Slycat source code directory containing sample client scripts:

$ cd src/slycat/web-client

• Synthesize some parameter image data, organized for use with Slycat:

$ python slycat-create-sample-parameter-image-csv.py

• The script creates a sample-parameter-images directory containing a set of randomly-generated images, and a
sample-parameter-images.csv file that contains links to the images, plus randomly-generated numeric, string,
and categorical parameters (the script includes optional command line parameters to control how much data is
generated). Now that you have some sample data, you’re ready to pull it into Slycat.

Create a Project

• Point a web browser to the Slycat web server at https://<docker ip address>

• Use Create > New Project on the Slycat navbar, enter “My PI Project” as the project name in the wizard, and
click Finish.

• The browser switches to a separate page for the new project.

Ingest a Parameter Image Model

• In the project page, choose Create > New Remote Parameter Image Model. This wizard is used to ingest a file
from a machine other than the host running the web browser.

• In the wizard that opens, enter “MyPI” as the model name and click Next.

• In the login screen that follows, choose hostname “localhost”, enter username “slycat” and password “slycat”
and choose Next. Note that these credentials will be used to SSH to another machine to load the parameter
image data (in this case, the “other” machine happens to be localhost, but the Slycat server can be configured to
connect to any other host that’s accessible via SSH).

• In the remote file browser that opens, navigate to the /home/slycat/src/slycat/web-client directory, and double-
click the sample-parameter-images.csv file that you generated in a previous step.

• A list of the variables (columns) from the file appears, along with five columns of checkboxes, allowing you to
designate each variable as in input, output, rating, categorical, or image variable. Slycat trys to guess the types
of the individual variables, but you will need to make some manual changes. Use the checkboxes to designate
“category0” and “category1” as Category variables, and “rating0” and “rating1” as Rating variables. Change
“output0”, “output1”, and “output2” to Output variables, and uncheck “unused0”, “unused1”, “unused2”.

• Note that the “image0”, “image1”, and “image2” columns are already correctly identified as Image variables, so
leave them alone, and click Finish.

• As before, you can navigate to the newly created model using the link in the last page of the wizard, the link on
the underlying project page, or the link in the status dropdown in the navbar.

2.3. Tutorial 75

https:/

slycat Documentation, Release 1.2.0

View a Parameter Image Model

• The bottom third of the model page features a table containing the raw data used to compute the model. Input
variables are color-coded green, output variables are color-coded purple, and the remaining variables are color-
coded white.

• The rest of the page contains a scatterplot with a point for each observation (row) in the data table.

Interact with a Parameter Image Model

• If you hover over any of the scatterplot points, you will be prompted for a username and password to retrieve
the corresponding image - when this happens use slycat and slycat as you’ve done before.

• Use the “X Axis” and “Y Axis” dropdown menus at the top of the display to use any two numeric variables for
the scatterplot axes.

• Click variable names in the raw data table or use the “Point Color” dropdown menu to color the scatterplot
points using any numeric variable.

• Hover over columns in the raw data table to reveal sorting widgets.

• Click observations in the scatterplot to highlight the corresponding entry in the raw data table.

• Click and drag in the scatterplot to rubber-band-select multiple observations.

• Click rows or shift-click ranges of rows in the raw data table to highlight corresponding observations in the
scatterplot.

• Choose an image variable using the “Image Set” dropdown at the top of the display, then hover the mouse over
observations in the scatterplot to see the corresponding images.

• Click the “pin” icon in the upper-left-corner of an image to display it permanently.

• Click the “close” icon in the upper-left-corner of a pinned image to close it.

• Drag the “resize” icon in the lower-right-corner of a pinned image to resize it.

• Click-and-drag anywhere else within a pinned image to reposition it on the page.

• Click-and-drag the colorbar to reposition it on the page.

Next Steps

That’s it for the tutorial . . . now on to Managing Docker.

2.3.5 Managing Docker

Here are some tips on managing your Slycat Docker container:

Stopping Slycat

The processes in the Slycat container that you created with docker run . . . will continue running until you stop it:

$ docker stop slycat

If you are using Boot2Docker to run your Slycat container in a VM on a non-Linux platform, you may want to shut
the VM down too:

76 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

$ boot2docker stop

Starting Slycat

If you’re using Boot2Docker to run your Slycat container on a non-Linux platform, you need to start the VM:

$ boot2docker start # If you aren't running on a Linux host.

To start the Slycat container:

$ docker start slycat

. . . and you’re ready to use Slycat again!

2.4 Setup Slycat Clients

Note: If you’re new to Slycat and are here give it a try, please see Install Slycat instead. The following outlines how to
setup a host to use the client scripts included with Slycat to upload data to an existing Slycat web server. If you don’t
already have a web server, you probably want to start with Setup Slycat Web Server.

Slycat includes a Python package to simplify writing custom clients. Custom clients are often required to handle data
ingestion, performing extraction and transformation of your specific data formats into a form usable by Slycat.

2.4.1 Prerequisites

You’ll need to install the following with your system package manager:

• git

• python 2.7

Further, you’ll need the following Python modules, installed using either your system package manager or pip:

• h5py

• ipython

• numpy

• pyzmq

• requests

• scipy

2.4.2 Installation

To use the functionality provided by the Slycat client scripts, you’ll need to obtain a copy of the source code - typically
by cloning the slycat repository from git:

$ cd
$ git clone git@github.com:sandialabs/slycat.git

Once you’ve cloned the repository, you need to tell Python where to find the Slycat package. The easiest way to do
this is to add the slycat/packages directory to your PYTHONPATH environment variable:

2.4. Setup Slycat Clients 77

slycat Documentation, Release 1.2.0

$ export PYTHONPATH=-/slycat/packages:$PYTHONPATH

Now, you can run scripts that use the Slycat package.

2.4.3 See Also

• REST API - Details the underlying Slycat HTTP API, which can be used with any programming language.

2.5 Setup Slycat Web Server

Note: If you’re new to Slycat and are here give it a try, please see Install Slycat instead. The following is a guide for
users who are ready to setup their own Slycat Web Server for production.

2.5.1 Use the Docker Image

Many administrators should be able to use the Slycat Docker image in production directly, and we strongly urge you
to try this approach first - after following the instructions at Install Slycat, you can simply ssh into the running Docker
container:

$ ssh slycat@<docker ip address> -p2222

make a few configuration changes (assign real passwords to the root and slycat users, replace our self-signed server
certificate with one of your own, configure a real password-check plugin, etc.) then continue using the image in
production. Because the Slycat Docker image is a container rather than a VM, there is absolutely no performance
penalty for using it in this configuration. You can even use Docker to automate this process, building your own
site-specific Slycat image with our Slycat image as the base!

2.5.2 Installing Slycat from Scratch

If you insist on creating your own Slycat instance from scratch, we still prefer to point you to our Dockerfiles for
information on installing Slycat and its dependencies, because these files are the actual scripts that we use to build
the Slycat Docker image - thus they’re an always-up-to-date and unambiguous specification of how to build a Slycat
server. Even if you don’t use Docker, the Dockerfiles are easy to understand and adapt to your own workflow and
platform.

You will find our Dockerfiles in a set of directories located in the docker directory within the Slycat repo:

https://github.com/sandialabs/slycat/tree/master/docker

There, you will find four subdirectories - supervisord, sshd, slycat, and slycat-dev - which are used to build four Docker
images. Each image builds on the previous, adding new functionality:

• supervisord - Starts with a Fedora Core base system, and adds an instance of supervisord that will be used to
startup the other processes.

• sshd - Installs an SSH server on top of the supervisord image, and configures supervisord to automatically start
it when the container is run.

• slycat - Installs the Slycat servers and their dependencies atop the sshd image, and configures supervisord to
automatically start them when the container is run.

• slycat-dev - Adds development tools to the base Slycat image, and configures the supervisorctl command so
developers can easily start and stop servers themselves.

78 Chapter 2. Documentation:

https://github.com/sandialabs/slycat/tree/master/docker

slycat Documentation, Release 1.2.0

The main differences between platforms will be in how you install the various dependencies. One platform - such as
Fedora Core in our Dockerfile - installs the Python h5py module and its compiled hdf5 library dependency using a
single yum package, while another platform - such as Centos 6 - provides a yum package for hdf5, but no package for
the Python h5py module, so you have to use pip to install it. Unfortunately, we can’t enumerate all the possibilities
here, so you’ll have to begin with the packages listed in our Dockerfiles, and generalize to your platform.

2.5.3 Configuring Slycat Web Server

Whether you’re setting-up an unmodified Slycat Web Server or developing new capabilities to suit your needs, you
will need to know how to modify its configuration. When you start Slycat Web Server:

$ cd slycat/web-server
$ python slycat-web-server.py

. . . it automatically loads a file config.ini from the same directory as slycat-web-server.py. The sample config.ini that
we provide with the source code is designed to start Slycat in a state that’s useful for developers, so you’ll likely want
to copy it to some other filesystem location, modify it, and point Slycat to the modified config.ini instead. Once you’ve
done that, you can specify the config file location at startup using the command-line:

$ python slycat-web-server.py --config=/etc/slycat/config.ini

The config.ini file is an INI file divided into sections using square braces. The [slycat] section is reserved for configu-
ration specific to the functionality of the Slycat server, while the [global] section and any sections starting with a slash
(for example: [/style]) are used to configure the CherryPy web server that Slycat is based upon.

The values for each setting in config.ini must be valid Python expressions. You should note that in the sample config.ini
we provide, some values are simple scalars, such as [global] server.socket_port, while some values are nested data
structures, such as [slycat] remote-hosts. This provides great flexibility to customize Slycat for your network. Here
are some common settings you may wish to modify:

[global] Section

• engine.autoreload.on - Controls whether Slycat will automatically restart when the source code is modified. This
is typically disabled in production.

• require.show_tracebacks - Controls whether exceptions during request handling will return debugging informa-
tion to the client. This is typically disabled in production.

• server.socket_host - IP address of the interface to listen on for requests. Use “0.0.0.0” to listen on all interfaces.
Use “127.0.0.1” to only accept requests from the local machine.

• server.socket_port - TCP port number to listen on for requests. Defaults to “8092” for development. Typically
set to “443” in production with SSL enabled, or “80” with SSL disabled.

• server.ssl_certificate - Path to a certificate used for SSL encryption. Leave blank to disable SSL. Relative paths
are relative to the slycat-web-server.py executable.

• server.ssl_private_key - Path to a private key used for SSL encryption. Leave blank to disable SSL. Relative
paths are relative to the slycat-web-server.py executable.

[slycat] Section

• allowed-markings - List of marking types that may be assigned to models.

2.5. Setup Slycat Web Server 79

http://www.cherrypy.org

slycat Documentation, Release 1.2.0

• plugins - List of filesystem plugin locations. You may specify individual .py files to be loaded, or directories. If
you specify a directory, every .py file in the directory will be loaded, but directories are not searched recursively.
Relative paths are relative to the slycat-web-server.py executable.

• remote-hosts - List containing an entry for each group of hosts that share a specific configuration. Each entry is
a dict containing the following:

– hostnames - Required list of hostnames that share a configuration.

– agent - Optional dict configuring remote agent access to the entry hostnames. Some models require the
Slycat Agent when accessing a remote host, and agents must be explicitly configured on a host to be used.
The agent dict must contain the following:

* command - Required string with the full remote command-line used to run the Slycat agent on the
given host. Typically /full/path/to/python /full/path/to/slycat-agent.py. Since an agent session can be
initiated by any user able to login to the remote host via ssh, you should specify required environment
variables as part of this command, too (for example, with env).

• server-admins - List of users allowed to administer the Slycat server. Server administrators have full read/write
access to all projects, regardless of project ACLs.

2.6 Docker Development

One of the easiest ways to begin making changes or additions to Slycat is using our Docker image to quickly setup a
development environment. Here are some guidelines to get you started:

2.6.1 Prerequisites

• We assume that you’ve already Installed Slycat and are familiar with how to manage the Slycat docker image.

• We provide a special developer’s image that modifies the Slycat Docker image that you’ve been working with
for easier development, so download and run it now:

$ docker run -p 2222:22 -p 80:80 -p 443:443 -p 5984:5984 -p 9001:9001 -d --name
→˓slycat-dev sandialabs/slycat-dev

• You will need to note the IP address of the Docker host:

– If you are running Docker on a Linux host, then the Docker host IP is “localhost” or “127.0.0.1”

– If you are running Boot2Docker on a non-Linux host, then the Docker host IP is the address reported by
the boot2docker ip command.

– We will refer to the host address as <docker host ip> throughout the rest of this document.

2.6.2 Working Inside the Running Container

• The Slycat container includes an ssh server, so you can login to the container as user slycat with password slycat:

$ ssh slycat@<docker host ip> -p2222

• Once you’re logged-in, you can pull the latest version of the source code (note that when we build the Docker
container, we checkout a specific, known-good commit, so you have to switch to a branch before you pull):

80 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

$ cd src/slycat
$ git checkout master
$ git pull

• And you can edit the source code in-place:

$ vi packages/slycat/...

• The Slycat software stack includes four running servers: the couchdb database, the Slycat web server, the Slycat
feed server, and an haproxy reverse proxy server. All four servers are automatically started by supervisord when
you start the slycat-dev container. To check on their status, use the supervisorctl command:

$ supervisorctl status
couchdb RUNNING pid 10, uptime 0:02:14
feed-server RUNNING pid 11, uptime 0:02:14
proxy-server RUNNING pid 13, uptime 0:02:14
sshd RUNNING pid 9, uptime 0:02:14
web-server RUNNING pid 12, uptime 0:02:14

However, development is often much easier when you run one or more of the servers yourself - you can configure
the server to restart automatically in response to code or configuration changes, see the server output in the
console, and know immediately if a typo or syntax error causes the server to fail.

You cannot simply kill a server process started by supervisord, because it will be automatically restarted. Use
supervisorctl to stop it, then start your own copy for development:

Running Your Own Web Server:

$ supervisorctl stop web-server
web-server: stopped
$ cd src/slycat/web-server
$ python slycat-web-server.py

Running Your Own Feed Server:

$ supervisorctl stop feed-server
feed-server: stopped
$ cd src/slycat/feed-server
$ python slycat-feed-server.py

Running Your Own Reverse Proxy:

$ supervisorctl stop proxy-server
proxy-server: stopped
$ cd src/slycat/proxy-server
$ sudo haproxy -f configuration.conf -d

Typically, you would then use a separate ssh login for making code changes.

• To commit changes while logged-in to the container, you’ll need to add your personal information to ~/.gitconfig:

[user]
name = Fred P. Smith
email = fred@nowhere.com

• By default, the git repository in the container is configured to access the public Slycat repository using https:
//github.com/sandialabs/slycat repository. If you want to push your commits to the public repository, there are
three alternatives:

2.6. Docker Development 81

https://github.com/sandialabs/slycat
https://github.com/sandialabs/slycat

slycat Documentation, Release 1.2.0

– Leave the repository URL unchanged, and push. You will be prompted for your github username and
password.

– Add your username to the repository URL. Then, you will only be prompted for your github password
when you push:

$ git remote set-url origin https://username@github.com/sandialabs/slycat

– Copy an existing github public key into the container, or generate a new github public key, and switch to
communication over ssh:

$ git remote set-url origin git@github.com:sandialabs/slycat

Note: If you’re working behind a proxy and using https:// for communication with github, you’ll need to let git know
about it:

$ export https_proxy=http://your.proxy.name:80

• If you need to install additional tools for development, use the yum and pip commands provided by the container
to install them.

Note: If you’re working behind a proxy, you’ll also want to add it to /etc/yum.conf to yum can download packages:

proxy=http://your.proxy.name:80

And you’ll need to specify the proxy when running pip:

pip install --proxy=http://your.proxy.name:80 mypackage

2.6.3 Working Outside the Running Container

Instead of working on the Slycat sources inside the running container, you may wish to edit them from the outside.
One advantage of this approach is that you can edit the sources using more sophisticated graphical tools installed on
your host system, instead of the minimalist command-line tools provided within the container. Another benefit is that
the setup you perform (configuring your git credentials, setting-up proxy information) is part of your host system and
will be retained even if you upgrade or replace the Slycat container.

One way to do this is to use sshfs to mount the source code inside the container to a directory on the host:

$ mkdir ~/src/slycat-container
$ sshfs -p 2222 slycat@<docker host ip>:/home/slycat/src/slycat ~/src/slycat-
→˓container -oauto_cache,reconnect,defer_permissions,negative_vncache,volname=slycat-
→˓container

The main disadvantage to working this way is the increased latency caused by the sshfs filesystem . . . some operations
(such as building the documentation) will be noticably slower when run on an sshfs mount

Note that you’ll still need to ssh into the container to run the Slycat server, but the server will still restart automatically
whenever you save changes to the sshfs mount.

82 Chapter 2. Documentation:

https://

slycat Documentation, Release 1.2.0

2.7 Testing

The following are required to run the Slycat test suite / view test coverage:

• behave - behavior-driven development (BDD) framework - http://pythonhosted.org/behave/

• coverage - code coverage module - http://nedbatchelder.com/code/coverage/

2.7.1 Setting Up Tests

The following set of instructions for the test setup assumes a new Ubuntu environment (desktop or server) with user
slycat. It also assumes that Slycat’s repository is cloned in the user’s home directory. The next commands install the
base packages needed for the test suite to run correctly:

$ cd
$ sudo apt-get update -qq
$ sudo apt-get install -y make build-essential python-software-properties ssh python-
→˓dev libldap2-dev libsasl2-dev libssl-dev

Slycat uses CouchDB as its database. Use the default installation settings for the database setup. See http://wiki.
apache.org/couchdb/Installing_on_Ubuntu for troubleshooting:

$ sudo apt-get install -y couchdb

To install haproxy-1.5. Note that the Ubuntu 12.04’s version is out-of-date:

$ sudo add-apt-repository -y ppa:vbernat/haproxy-1.5
$ sudo apt-get update -qq
$ sudo apt-get install haproxy

To install the virtual X server and Firefox:

$ sudo apt-get install xvfb firefox

To install FFmpeg for the agent testing:

$ wget http://johnvansickle.com/ffmpeg/releases/ffmpeg-release-64bit-static.tar.xz
$ mkdir ffmpeg
$ tar xf ffmpeg-release-64bit-static.tar.xz --strip-components 1 -C ffmpeg
$ export PATH=$HOME/ffmpeg:$PATH

To point Python to the Slycat packages:

$ export PYTHONPATH=$HOME/slycat/packages

To generate a private certificate authority:

$ openssl genrsa -out root-ca.key 2048
$ openssl req -x509 -new -nodes -key root-ca.key -days 365 -out root-ca.cert -subj "/
→˓C=US/ST=New Mexico/L=Albuquerque/O=The Slycat Project/OU=QA/CN=Slycat"

To generate a self-signed certificate:

2.7. Testing 83

http://pythonhosted.org/behave/
http://nedbatchelder.com/code/coverage/
http://wiki.apache.org/couchdb/Installing_on_Ubuntu
http://wiki.apache.org/couchdb/Installing_on_Ubuntu

slycat Documentation, Release 1.2.0

$ openssl genrsa -out web-server.key 2048
$ openssl req -new -key web-server.key -out web-server.csr -subj "/C=US/ST=New Mexico/
→˓L=Albuquerque/O=The Slycat Project/OU=QA/CN=localhost"
$ openssl x509 -req -in web-server.csr -CA root-ca.cert -CAkey root-ca.key -
→˓CAcreateserial -out web-server.cert -days 365

To point HAProxy to the server key and certificate:

$ cat web-server.key web-server.cert > ssl.pem

To create a directory to store HDF5 files:

$ mkdir slycat/data-store

To install and use Conda for the Python interpreter and dependencies:

$ wget http://repo.continuum.io/miniconda/Miniconda-latest-Linux-x86_64.sh -O
→˓miniconda.sh
$ chmod +x miniconda.sh
$./miniconda.sh -b
$ export PATH=$HOME/miniconda/bin:$PATH
$ conda update --yes conda
$ conda create --yes -n slycat coverage h5py mock nose paramiko Pillow pip pyparsing
→˓requests scipy
$ source activate slycat
$ pip install --no-use-wheel behave "cherrypy==3.2.6" couchdb coveralls python-ldap
→˓pystache routes tornado-couchdb selenium pyvirtualdisplay

2.7.2 Running Tests

Create a file proxy-server-config.conf in the /home/slycat directory with the following content:

global
daemon
maxconn 256
user slycat
group slycat
tune.ssl.default-dh-param 2048

defaults
mode http
option forwardfor
timeout connect 5000ms
timeout client 50000ms
timeout server 50000ms
timeout tunnel 1d

frontend http-in
bind *:80
redirect scheme https if !{ ssl_fc }

frontend https-in
bind *:443 ssl crt /home/slycat/ssl.pem
reqadd X-Forwarded-Proto:\ https
redirect location /projects if { path / }
use_backend slycat-feed-server if { path_beg /changes-feed }

(continues on next page)

84 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

(continued from previous page)

default_backend slycat-web-server

backend slycat-web-server
server server1 127.0.0.1:8092

backend slycat-feed-server
server server1 127.0.0.1:8093

To run the test suite, enter the following commands:

$ python slycat/web-server/slycat-couchdb-setup.py
$ sudo haproxy -f proxy-server-config.conf -db &
$ python slycat/feed-server/slycat-feed-server.py --config ../travis-ci/config.ini &
$ python slycat/web-server/slycat-web-server.py --config ../travis-ci/config.ini &
$ cd slycat
$ REQUESTS_CA_BUNDLE=/home/slycat/root-ca.cert coverage run --source agent,packages/
→˓slycat --omit="packages/slycat/web/server/*" -m behave -i "(agent|hyperchunks|rest-
→˓api|slycat-web-server|slycat-project)"

2.7.3 Running Coverage

To run the coverage report:

$ coverage report

2.7.4 Modifying Tests

Behave feature and step definition files are located in the slycat/features and slycat/features/steps directories, respec-
tively.

2.8 Coding Guidelines

• All new Python code in Slycat should follow the guidelines outlined in PEP 8 with one exception: we use two
spaces for indentation instead of four. We have lots of code that predates those guidelines, but are actively
updating it as we go along.

2.9 Plugins

The Slycat server includes a plugin system that streamlines the process of customizing it to suit your environment and
adding new Slycat features.

2.9.1 Overview

A Slycat plugin is a Python module (.py file) that is loaded into the Slycat Web Server at startup. By default, Slycat
ships with a set of plugins in the web-server/plugins directory. The set of plugins to be loaded is specified in the
server’s config.ini file. The plugins entry in config.ini is a Python list containing zero-or-more plugin locations, which
may be individual .py files to be loaded, or directories. Every .py file in a directory will be loaded as a plugin, but

2.8. Coding Guidelines 85

http://legacy.python.org/dev/peps/pep-0008

slycat Documentation, Release 1.2.0

directories are not searched recursively. Relative paths are relative to the slycat-web-server.py executable. Plugin
developers can append their own paths to the list to deploy their plugins, by editing the config.ini file included with the
Slycat source code, or by using a different config file altogether.

Once all plugin modules have been loaded, the server will call the register_slycat_plugin function in each module, if
it exists. The function will be called with a context object as its sole argument. The plugin code uses the API provided
by the context object to register new functionality with the server. This explicit registration process allows a single
plugin module to register as many new capabilities as it wishes, and the registration API continues to expand as we
add new categories of plugin functionality to the server.

Note: You are free to register as many plugins or as many types of plugins as you like within a plugin module - you are
not obliged to split your code into one plugin per module, unless you want to. For example, if your organization created
a new type of model and had three in-house marking types, you could put all four plugins in a single, organization-
specific plugin module.

Warning: Plugin module names must be globally unique - that is, the filename of all plugin .py files loaded
by the server must be unique, not just the filepaths. Thus, you should not use generic filenames like plugin.py
for plugin modules. Instead, incorporate functionality- or organziation-specific strings into the filenames such as
bayesian-q-stat-model.py or acme-dynamite-division-authentication.py. The prefix slycat- is reserved for plugin
modules shipped with Slycat.

2.9.2 New Marking Types

Examples: plugins/slycat-no-marking.py, plugins/slycat-airmail-marking.py, plugins/slycat-faculty-only-marking.py

A plugin can register new marking types with the Slycat server. Markings are used to apply user-specific administrative
or organizational labels to models such as “Draft” or “Human Resources Only”.

A marking consists of the following:

1) A unique string identifier called the marking type.

2) A human-readable label that will become part of the user interface when prompting end-users to choose the
marking for a model.

3) A block of HTML markup that provides a “badge” representation of the marking used in lists.

4) Optional block of HTML markup that will be inserted into the user interface before marked content.

5) Optional block of HTML markup that will be inserted into the user interface after marked content.

If the plugin doesn’t provide 5), 4) will be displayed at the top and bottom of marked content. If 4) and 5) are omitted,
3) will be displayed at the top and bottom of marked content.

In practice, most marking plugins should include inline style information in their HTML markup to control the ap-
pearance of the marking. Note that models can currently have a single marking applied.

2.9.3 New Model Types

Examples: plugins/slycat-hello-world, plugins/slycat-linear-regression-demo, plugins/slycat-bookmark-demo

A plugin can add a new type of model to the Slycat server. In this context, a plugin model consists of the following:

• A unique string identifier called the model type.

86 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

• Code that will be executed on the server when a model is finished (i.e. one-time computation to perform after
the model’s input artifacts have been stored).

• A block of HTML code that will be used as the model’s interactive user interface. This block of HTML will be
inserted into a larger HTML frame that provides common functionality for manipulating models, and delivered
to the end-user’s client.

Here is a bare-minimum example of a do-nothing model plugin:

def register_slycat_plugin(context):

def finish(database, model):
import datetime
import slycat.web.server.model
slycat.web.server.model.update(database, model, state="finished", result=

→˓"succeeded", finished=datetime.datetime.utcnow().isoformat(), progress=1.0, message=
→˓"")

def html(database, model):
return "<h1>Hello, World!</h1>"

context.register_model("my-model", finish, html)

Note that finish() simply marks the model as “finished” so clients will know that the model is ready to view, and the
html() function returns a familiar message.

When the Slycat server starts, the plugin will be loaded into the server and register a new my-model model type. Of
course, you’ll need some way to actually create an instance of a my-model model. The easiest way is to use a script to
create my-model model instances:

import slycat.web.client

parser = slycat.web.client.option_parser()
parser.add_argument("--marking", default="", help="Marking type. Default: %(default)s
→˓")
parser.add_argument("--model-name", default="Hello World Model", help="New model name.
→˓ Default: %(default)s")
parser.add_argument("--project-name", default="Hello World Project", help="New
→˓project name. Default: %(default)s")
arguments = parser.parse_args()

connection = slycat.web.client.connect(arguments)

pid = connection.find_or_create_project(arguments.project_name)

mid = connection.post_project_models(pid, "my-model", arguments.model_name, arguments.
→˓marking)

connection.post_model_finish(mid)
connection.join_model(mid)

slycat.web.client.log.info("Your new model is located at %s/models/%s" % (arguments.
→˓host, mid))

In this case the script provides a simple command line interface for specifying the name and marking for the model,
along with the name of a new or existing project to contain the new model. Once the connection to the Slycat server
has been made and a project identified or created, the new model is created and immediately finished (causing the
finish() function to be called). When you view the new model in a web browser, it will display the content returned by
the plugin’s html() function.

2.9. Plugins 87

slycat Documentation, Release 1.2.0

2.9.4 Model Commands

Examples: plugins/slycat-matrix-demo-model

Typically, we assume that a Slycat model is created, artifacts are ingested, one-time server-side computation is per-
formed (using a model plugin’s finish() function), then a web browser provides interactive visualization of the results
(using the output of a model plugin’s html() function).

However, in some circumstances this may be insufficient - a model may need to provide additional server-side com-
putation to be executed by the client. In this case, a model command plugin is used to register additional server-side
commands that can be invoked by the client.

2.9.5 Password Check Plugins

Examples: plugins/slycat-identity-password-check.py, plugins/slycat-ldap-password-check.py

Password check plugins are callbacks that are executed whenever the server needs to verify a user’s credentials. The
password check plugin registers a callback that will be called with an authentication realm, username, and password,
and returns a tuple containing True if the username and password can be authenticated, and a (possibly empty) list of
groups of which the user is a member:

def register_slycat_plugin(context):
def check_password(realm, username, password):
"""Allow any user, so long as their username and password are the same.
Obviously, this is suitable only for testing."""
groups = []
return username and password and username == password, groups

context.register_password_check("slycat-identity-password-check", check_password)

To use a password check plugin, you would have to add it to your server’s config.ini:

[slycat]
password-check: {"plugin": "slycat-identity-password-check"}

In a more realistic authentication scenario, you might use the LDAP password check plugin that ships with Slycat to
connect to an LDAP server. The following configuration enables the LDAP plugin and configures it to connect to a
public test server:

[slycat]
password-check: {"plugin": "slycat-ldap-password-check", "kwargs":{"server":"ldaps://
→˓ldap.forumsys.com:389", "user_dn":"uid={},dc=example,dc=com"}}

2.10 Colophon

The following are needed to generate this documentation:

• Sphinx - documentation builder - http://sphinx-doc.org

• Sphinx readthedocs theme - https://github.com/snide/sphinx_rtd_theme

• napoleon - http://sphinxcontrib-napoleon.readthedocs.org/en/latest/

• httpdomain - http://pythonhosted.org/sphinxcontrib-httpdomain/

88 Chapter 2. Documentation:

http://sphinx-doc.org
https://github.com/snide/sphinx_rtd_theme
http://sphinxcontrib-napoleon.readthedocs.org/en/latest/
http://pythonhosted.org/sphinxcontrib-httpdomain/

slycat Documentation, Release 1.2.0

2.10.1 Writing the Documentation

The primary sources for this documentation are the docstrings embedded in the Slycat source code itself. When
writing docstrings, strictly follow the guidelines at https://github.com/numpy/numpy/blob/master/doc/HOWTO_
DOCUMENT.rst.txt

The remainder of the documentation is contained in *.rst files in the slycat/docs directory.

2.10.2 Building the Documentation

To build the documentation, run:

$ cd slycat/docs
$ python setup.py

Once the documentation is built, you can view it by opening slycat/docs/_build/html/index.html in a web browser.

2.10.3 Deploying the Documentation

The slycat documentation is hosted at http://slycat.readthedocs.org and is automatically built and deployed whenever
changes are pushed to the Slycat repository at github.com.

2.11 Models

From an end-user perspective, the main functions of the Slycat Web Server are creation and storage of models - where
a model is a typed collection of artifacts and metadata. Slycat defines several specific model types, plus an interactive
visual user interface for each type. The following documents each model type in detail:

2.11.1 Parameter Image Model

Overview

A Parameter Image model relates a set of images to a set of feature vectors, where we assume that each feature vector
is a set of simulation inputs and outputs, and we assume that each image is a simulation output.

Currently, the preferred method to create a new Parameter Image model is to import a remote delimited text file
(typically a CSV file) using a web browser. For low-level details on how the input file must be formatted, see slycat.
table.parse(). In addition to the requirements documented there, the input delimited text file should contain the
following:

• Zero to many “input” columns that contain simulation inputs, e.g: the parameters in a parameter study.

• Zero to many “output” columns that contain simulation outputs, e.g: features extracted from the simulations.

• Zero to many “rating” columns that end users will edit to designate regions in the parameter space that should
be ignored / explored further in future studies.

• Zero to many “category” columns that contain categorical variables, such as the results of machine learning
classification. Category variables may be numeric or string-based, and also may be edited by end users.

• Zero to many “image” columns that contain file URIs pointing to images on a remote host. Each file URI must
be of the form file://hostname/path/to/file and files must be either PNG or JPEG images. Slycat uses the file
URIs to retrieve images via SSH on-demand when end users hover over an observation in the scatterplot, so it
is important that the files remain in-place and have appropriate file permissions.

2.11. Models 89

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
http://slycat.readthedocs.org

slycat Documentation, Release 1.2.0

• At least two numeric columns, regardless of type, so the visualization can generate a scatterplot.

Note that there are no constraints on variable names - end users will explicitly identify which columns are “input”,
“output”, “rating”, “category”, “image”, or “none of the above” when the data is imported.

Stored Artifacts

On the server side, a parameter image model includes the following artifacts that are accessible via the REST API:

• data-table - darray containing the input table data (a 1D darray with one attribute per table column).

• category-columns - JSON array containing a zero-based index for every column in data-table that contains
categorical data.

• image-columns - JSON array containing a zero-based index for every column in data-table that contains images.

• input-columns - JSON array containing a zero-based index for every column in data-table that should be con-
sidered an input.

• output-columns - JSON array containing a zero-based index for every column in data-table that should be
considered an output.

• rating-columns - JSON array containing a zero-based index for every column in data-table that contains ratings.

2.12 REST API

The Slycat server exposes a REST HTTP API that can be used with any programming language or library that supports
HTTP requests.

2.12.1 Hyperchunks

To meet a wide variety of needs for incremental and interactive data ingestion and retrieval, Slycat has evolved a
complex data storage hierarchy. At the top of the hierarchy are projects, which provide administrative and access
controls, grouping together related analytical results. Models are owned by projects, and represent instances of specific
analysis types. Models contain data artifacts, whose layout and structure are dictated by the model type. Each artifact
in a model is identified by name, which can be an arbitrary string. There are three types of artifacts: parameters are
JSON objects of arbitrary complexity, intended for storage of small quantities of metadata. Files are opaque binary
objects that can store large quantities of data, along with an explicitly stored MIME type. The final and most widely
used type of artifact is an arrayset, which is a one-dimensional array of darrays. A darray is a dense, multi-dimensional
multi-attribute array, and an arrayset stores 𝑛 darrays that can be accessed by integer indices in the range [0, 𝑛). In-
turn, each attribute in a darray can be accessed by its integer index, and the elements in each attribute can be identified
using a hyperslice, which includes a slice of element indices for each dimension of the darray.

The bulk of the data in a Slycat model is stored in arraysets, and each time a client reads or writes data to an arrayset, it
must specify all of the parameters mentioned above. To make this process simpler, while allowing for a wide variety of
data access patterns, we group this information into hyperchunks, and have developed the Hyperchunk Query Language
or HQL to serve as a compact specification for a set of hyperchunks. Using HQL, a client can read and write data that
spans the arrays and attributes in an arrayset, including computed attributes and arbitrary expressions.

Basic HQL

To begin, the most basic building-block in HQL is a slice expression, which follows the same syntactic rules as slicing
in the Python language: At its most general a slice takes the form “start:stop:skip”, which specifies every 𝑠𝑘𝑖𝑝-th
element in the half-open range [𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝). If start is omitted, it defaults to zero. If stop is omitted, it defaults to

90 Chapter 2. Documentation:

http://en.wikipedia.org/wiki/Representational_state_transfer

slycat Documentation, Release 1.2.0

the length of the available range. If skip is omitted it defaults to one. If start or stop are negative, they represent
indices counted backwards from the end of the available range. Start, stop, and skip may be omitted or used in any
combination desired:

• “10:20:2” - every other index in the range [10, 20).

• “10:20” - every index in the range [10, 20).

• “10:” - every index from 10 through the end of the available range.

• “:20” - every index in the range [0, 20).

• “. . . ” - every index in the available range.

• “:” - every index in the available range.

• “::” - every index in the available range.

• “::2” - every other index in the available range, starting with zero: 0, 2, 4,

• “1::2” - every other index in the available range, starting with one: 1, 3, 5,

• “10” - index 10.

• “-1” - last index in the available range.

• “-10:” - last ten indices in the available range.

Recall that a slice is a range of indices along a single dimension, while darrays are multi-dimensional. Thus, to retrieve
data from a darray with more than one dimension, we need to specify hyperslice expressions. To do this, HQL uses
slice expressions separated by commas. For example:

• “1” - index 1 of a vector.

• “1,2” - row 1, column 2 of a matrix.

• “3,. . . ” - row 3 of a matrix.

• “. . . ,4” - column 4 of a matrix.

• “50:60,7” - rows [50, 60) from column 7 in a matrix.

• “50:60,7:10” - rows [50, 60) from columns [7, 10) in a matrix.

Additionally, HQL allows us to combine multiple hyperslice expressions, separated by vertical bars. This means we
can specify irregular sets of data that can’t be specified with the normal slice syntax alone:

• “1|3|4” - indices 1, 3, and 4 of a vector.

• “10:20|77” - indices [10, 20) and 77 from a vector.

• “1,2|33,4” - cells 1,2 and 33,4 from a matrix.

With all this in mind, we can begin putting the pieces together into hyperchunks. A typical HQL expression includes
three pieces of information, separated with forward slashes:

array expression / attribute expression / hyperslice expression

Since an arrayset is a one-dimensional set of darrays, an HQL array expression is a set of one-or-more one-dimensional
hyperslice expressions. Similarly, array attributes are accessed by their one-dimensional attribute indices, so basic
HQL attribute attribute expressions are also one-dimensional hyperslices. Finally, the subset of each attribute to
retrieve is specified using one-or-more multi-dimensional hyperslices, which must match the dimensionality of the
underlying array. Here are some simple examples:

• “1/2/10” - array 1, attribute 2, element 10

• “1/2/10:20” - array 1, attribute 2, elements [10, 20).

2.12. REST API 91

slycat Documentation, Release 1.2.0

• “1/2/. . . ” - the entire contents of array 1, attribute 2

• “1/2:4/. . . ” - the entire contents of array 1, attributes 2 and 3

• “. . . /2/. . . ” - the entire contents of attribute 2 for every array in the arrayset.

• “. . . /. . . /. . . ” - everything in the entire arrayset.

The preceding examples assume one-dimensional darrays. Here are some examples of working with matrices:

• “1/2/10:20,30:40” - a ten-by-ten subset of the matrix stored in array 1, attribute 2.

• “1/2/:,3” - column 3 of the matrix stored in array 1, attribute 2.

• “1/2/3,. . . ” - row 3 of the matrix stored in array 1, attribute 2.

And here are examples using multiple hyperslices:

• “1|3|4/. . . /. . . ” - the entire contents of arrays 1, 3, and 4.

• “1/3|7|8/. . . ” - the entire contents of array 1, attributes 3, 7, and 8.

• “1/2/:,0|:,3|:10” - columns 0, 3, and 10 from the matrix stored in array 1, attribute 2.

Note that when you use HQL to specify the locations for reading and writing data, the data will contain the cartesian
product of the specified arrays, attributes, and hyperslices, in array-attribute-hyperslice order. For example, retrieving
the hyperchunk “0:2/4:6/10:20|30:40” will return, in-order:

• Array 0, attribute 4, elements 10:20

• Array 0, attribute 4, elements 30:40

• Array 0, attribute 5, elements 10:20

• Array 0, attribute 5, elements 30:40

• Array 1, attribute 4, elements 10:20

• Array 1, attribute 4, elements 30:40

• Array 1, attribute 5, elements 10:20

• Array 1, attribute 5, elements 30:40

All of the APIs that work with hyperchunks take a set of hyperchunks, rather than a single hyperchunk, as their
parameter. You can combine multiple hyperchunks by separating them with semicolons:

• “1/2/. . . ;3/4/. . . ” - the entire contents of array 1 attribute 2 and array 3 attribute 4.

Advanced HQL

In addition to slices specifying attribute indices, HQL attribute expressions can include computed expressions that
generate attribute data “on the fly”. Attribute expressions currently include function execution and a full set of boolean
expressions, including set operations:

• “0/1|index(0)/. . . ” - The entire contents of array 0, attribute 1, plus coordinate indices along dimension 0.

• “0/1|rank(a1,”asc”)/. . . ” - The entire contents of array 0, attribute 1, plus the rank of each attribute 1 element in
ascending order.

• “0/1|a1 > 5/. . . ” - Return the entire contents of array 0, attribute 1, and whether each attribute 1 element is
greater than five.

• “0/1|a1 > 5 and a1 < 13/. . . ” - Return the entire contents of array 0, attribute 1, and whether each attribute 1
element is between five and thirteen.

92 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

• “0/1|a1 in [“red”, “cinnamon”]/. . . ” - Return the entire contents of array 0, attribute 1, and whether each attribute
1 element matches “red” or “cinnamon”.

HQL provides a full set of boolean operators: <, >, <=, >=, ==, and !=, along with in and not in for testing set
membership, plus and and or for logical comparisons. You may use parentheses to control the precedence of complex
expressions. Of course, you can specify as many computed attribute expressions as you like, using vertical pipes as a
separator.

HQL also allows an optional fourth type of expression, an “order” expression, used to sort the data to be returned. The
order expression should return an integer rank for each element in the data to be returned and appears between the
attribute expression and the hyperslices expression:

• 0/1/order:rank(a1,”asc”)/. . . - The entire contents of array 0, attribute 1, sorted in ascending order.

• 0/1/order:rank(a2, “desc”)/. . . - The entire contents of array 0, attribute 1, sorted in descending order of attribute
2

• 0/1/order:rank(a1,”asc”)/0:10 - Array 0, attribute 1, first ten elements in ascending order.

Note that the hyperslice in the final example retrieves the first ten elements of the sorted data, rather than the first ten
elements of the attribute.

HQL Context

Depending on the context, not all APIs allow every HQL feature. For example, APIs that write data don’t allow com-
puted attribute expressions; some APIs only allow array expressions; others allow only array and attribute expressions.
For those situations, you may omit the other parts of the HQL. For example:

• “10:20;35” - arrays [10, 20) plus array 35.

• “3/4;5/7” - array 3 attribute 4, plus array 5 attribute 7.

2.12.2 DELETE Logout

DELETE /logout
Deletes a session and its browser cookie.

Sample Request

DELETE /logout HTTP/1.1
Host: localhost:8093
Content-Length: 0
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
Cookie: slycatauth=dee8324c69d2424385246edc8d92e996; slycattimeout=timeout

Sample Response

HTTP/1.1 204 Model deleted.
Cache-Control: no-cache, no-store, must-revalidate
Content-Length: 0
Content-Type: text/html;charset=utf-8
Date: Wed, 16 Mar 2016 16:31:53 GMT
Expires: 0
Pragma: no-cache
Server: CherryPy/4.0.0

(continues on next page)

2.12. REST API 93

slycat Documentation, Release 1.2.0

(continued from previous page)

Set-Cookie: slycatauth=dee8324c69d2424385246edc8d92e996; expires=Wed, 16 Mar 2016
→˓16:31:53 GMT
slycattimeout=timeout; expires=Wed, 16 Mar 2016 16:31:53 GMT

See Also

• POST /login

2.12.3 DELETE Model

DELETE /models/(mid)
Deletes a model and all its artifacts.

Parameters

• mid (string) – Unique model identifier.

Status Codes

• 204 No Content – The model and its artifacts have been deleted.

Sample Request

DELETE /models/8b8122539570439cb3703c0f8806158e HTTP/1.1
Host: localhost:8093
Content-Length: 0
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 204 Model deleted.
Date: Mon, 25 Nov 2013 20:36:04 GMT
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.2.2

See Also

• POST /projects/(pid)/models

• GET /models/(mid)

• PUT /models/(mid)

2.12.4 DELETE Project

DELETE /projects/(pid)
Deletes a project and all its models.

Parameters

• pid – Unique project identifier.

94 Chapter 2. Documentation:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

slycat Documentation, Release 1.2.0

Status Codes

• 204 No Content – The project, its models, and artifacts have been deleted.

Sample Request

DELETE /projects/dbaf026f919620acbf2e961ad732433d HTTP/1.1
Host: localhost:8093
Content-Length: 0
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 204 Project deleted.
Date: Mon, 25 Nov 2013 20:35:59 GMT
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.2.2

See Also

• GET /projects/(pid)

• PUT /projects/(pid)

2.12.5 DELETE Project Cache Object

DELETE /projects/(pid)/cache/
key Deletes an object from the project cache.

Parameters

• pid (string) – Unique project identifier.

• key (string) – Cache object identifier.

Status Codes

• 204 No Content – The cached object has been deleted.

Sample Request

DELETE /projects/dbaf026f919620acbf2e961ad732433d/cache/file://example.com/foo/
→˓bar/baz.jpg HTTP/1.1
Host: localhost:8093
Content-Length: 0
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 204 Object deleted.
Date: Mon, 25 Nov 2013 20:35:59 GMT
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.2.2

2.12. REST API 95

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

slycat Documentation, Release 1.2.0

See Also

• GET /projects/(pid)/cache/(key)

2.12.6 DELETE Remote

DELETE /remotes/(sid)
Deletes a remote session created with POST /remotes.

Parameters

• sid – Unique session identifier.

Status Codes

• 204 No Content – The remote session has been deleted.

Sample Request

DELETE /remotes/dbaf026f919620acbf2e961ad732433d HTTP/1.1
Host: localhost:8093
Content-Length: 0
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 204 Session deleted.
Date: Mon, 25 Nov 2013 20:35:59 GMT
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.2.2

See Also

• POST /remotes

2.12.7 DELETE Upload

DELETE /uploads/(uid)
Delete an upload session used to upload files for storage as model artifacts. This function must be called once
the client no longer needs the session, whether the upload(s) have been completed successfully or the client is
cancelling an incomplete session.

Parameters

• uid (string) – Unique upload session identifier.

Status Codes

• 204 No Content – The upload session and any temporary storage have been deleted.

• 409 Conflict – The upload session cannot be deleted, because parsing is in progress. Try
again later.

96 Chapter 2. Documentation:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10

slycat Documentation, Release 1.2.0

See Also

• POST /uploads/(uid)/finished

2.12.8 GET Bookmark

GET /bookmarks/(bid)
Retrieves a bookmark - an arbitrary collection of client state.

Parameters

• bid (string) – Unique bookmark identifier.

Response Headers

• Content-Type – application/json

Sample Request

GET /bookmarks/da47466b64216fbb5f782bc2487ceed0 HTTP/1.1
Host: localhost:8092
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.6.1.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Thu, 25 Apr 2013 21:33:51 GMT
Content-Length: 40
Content-Type: application/json
Server: CherryPy/3.2.2

{"selected-column":34,"selected-row":13}

See Also

• POST /projects/(pid)/bookmarks

2.12.9 GET Home

GET /
Returns a redirect to /projects.

Status Codes

• 303 See Other – Redirect to GET /projects.

See Also

• GET /projects

2.12. REST API 97

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4

slycat Documentation, Release 1.2.0

2.12.10 GET Model Arrayset Data

GET /models/(mid)/arraysets/
aid/data Retrieve data stored in arrayset darray attributes. The caller may request data stored using any
combination of arrays, attributes, and hyperslices.

Parameters

• mid (string) – Unique model identifier.

• aid (string) – Arrayset artifact id.

Query Parameters

• hyperchunks – The request must contain a parameter hyperchunks that specifies the ar-
rays, attributes, and hyperslices to be returned, in Hyperchunks format.

• byteorder – The request may optionally contain a parameter byteorder that specifies that
the response should be binary data with the given endianness. The byteorder parameter
must be either “little” or “big”. Note that the byteorder parameter can only be used if every
attribute in every hyperchunk is of numeric type. If the byteorder parameter is used, the
request must accept application/octet-stream as the result content-type, and the response
data will contain contiguous raw data bytes in the given byteorder, in the same order as the
requested hyperchunks / hyperslices. For multi-dimension arrays, hyperslice array elements
will be in “C” order (the last coordinate varies the fastest).

If the byteorder parameter isn’t specified, the response data will be a JSON-encoded array
with length equal to the total number of hyperslices. Each element in this top level array will
be an array containing the data for the corresponding hyperslice, in the same order as the
requested hyperchunks / hyperslices. For multi-dimension arrays, data for the corresponding
hyperslice will be nested further, in “C” order (the last coordinate varies the fastest).

Response Headers

• Content-Type – application/octet-stream or application/json

The following request will return all of the data for array 0, attribute 1 from an arrayset artifact with id “foo”:

Sample Request

GET /models/6706e78890884845b6c709572a140681/arraysets/foo/data?hyperchunks=0/1/..
→˓.&byteorder=little HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/octet-stream
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Tue, 26 Nov 2013 16:40:04 GMT
Content-Length: 80
Content-Type: application/octet-stream
Server: CherryPy/3.2.2

..

98 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

See Also

• Hyperchunks

• GET /models/(mid)/arraysets/(aid)/metadata

• PUT /models/(mid)/arraysets/(aid)/data

2.12.11 GET Model Arrayset Metadata

GET /models/(mid)/arraysets/
aid/metadata Used to retrieve metadata and statistics for an arrayset artifact - a collection of dense, multidi-
mensional darray objects. A darray is a dense, multi-dimensional, multi-attribute array, suitable for storage of
arbitrarily-large data.

The metadata for a single darray includes the name, type, half-open range of coordinate values, and shape for
each dimension in the array, plus the name and type of each attribute.

Statistics can be retrieved for individual darray attributes, and include minimum and maximum values, plus a
count of unique values for an attribute. Although statistics are cached, retrieving them may be an extremely
expensive operation, since they involve full scans through their respective attributes. Because of this, callers are
encouraged to retrieve statistics only when needed.

GET Model Arrayset Metadata can be called in two ways: without any query string, it will return an array
containing metadata for every array in the arrayset, without any statistics. Using the arrays argument, the caller
can request metadata for an explicit list of arrays. The statistics argument is used to request statistics for an
explicit list of array attributes. The unique argument is used to request unique values for an explicit list of
array attributes. The three arguments can be combined to retrieve arbitrary combinations of array metadata and
attribute statistics in a single request.

Parameters

• mid (string) – Unique model identifier.

• aid (string) – Arrayset artifact id.

Query Parameters

• arrays – Optional, retrieve array metadata for a set of arrays specified in Hyperchunks
format. Note that only the array part of the hyperchunk is used in this case - attributes and
hyperslices, if provided, are ignored.

• statistics – Optional, retrive statistics for a set of array attributes specified in Hyper-
chunks format. Note that only the array and attribute parts of the hyperchunk is used in this
case - hyperslices, if provided, are ignored.

• unique – Optional, retrieve unique values for a set of array attributes specified in Hy-
perchunks format. Note that you must provide a full hyperchunk with array, attribute, and
hyperslice(s), and that the hyperslice(s) refer to ranges of unique values, not ranges of at-
tribute values. So a hyperchunk 0/1/:100 means “return the first 100 unique values in array
0, attribute 1”.

Response Headers

• Content-Type – application/json

Simple Request

2.12. REST API 99

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

GET /models/e97077e27af141d6a06f17c9eed6c17a/arraysets/canonical-variables/
→˓metadata HTTP/1.1
Host: localhost:8092
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: application/json
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.6.2.el6.x86_64

Simple Response

HTTP/1.1 200 OK
Date: Tue, 11 Jun 2013 19:00:50 GMT
Content-Length: 195
Content-Type: application/json
Server: CherryPy/3.2.2

[
{

"index": 0,
"attributes":
[
{"type": "float64", "name": "correlation"}

],
"dimensions":
[
{"end": 3, "begin": 0, "type": "int64", "name": "component"},
{"end": 5, "begin": 0, "type": "int64", "name": "input"}

],
"shape":
[
3, 5

],
}

]

Complex Request

GET /models/e97077e27af141d6a06f17c9eed6c17a/arraysets/foo/metadata?arrays=0%3b1&
→˓statistics=0/0%3b0/1 HTTP/1.1
Host: localhost:8092
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: application/json
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.6.2.el6.x86_64

Complex Response

HTTP/1.1 200 OK
Date: Tue, 11 Jun 2013 19:00:50 GMT
Content-Length: 195
Content-Type: application/json
Server: CherryPy/3.2.2

{
"arrays":
[

{

(continues on next page)

100 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

(continued from previous page)

"index": 0,
"attributes":
[
{"type": "float64", "name": "weight"}
{"type": "string", "name": "animal"}

],
"dimensions":
[
{"end": 10, "begin": 0, "type": "int64", "name": "i"},

],
"shape":
[
10,

],
},
{

"index": 1,
"attributes":
[
{"type": "float64", "name": "c"}
{"type": "float64", "name": "d"}

],
"dimensions":
[
{"end": 10, "begin": 0, "type": "int64", "name": "i"},

],
"shape":
[
10,

],
}

],
"statistics":
[

{
"array": 0,
"attribute": 0,
"min": 0.1,
"max": 1237.3,
"unique": 3704,

},
{
"array": 0,
"attribute": 1,
"min": "aardvark",
"max": "zebra",
"unique": 4,

}
]

}

See Also

• Hyperchunks

• GET /models/(mid)/arraysets/(aid)/data

2.12. REST API 101

slycat Documentation, Release 1.2.0

• PUT /models/(mid)/arraysets/(aid)/data

2.12.12 GET Model Command

GET /models/(mid)/commands/
type/command Execute a custom model command.

Plugins may register custom commands to be executed on the server, using an existing model as context. Custom
commands are used to perform computation on the server instead of the client, and would typically use model
artifacts as inputs.

Parameters

• mid (string) – Unique model identifier.

• type (string) – Unique command category.

• command (string) – Custom command name.

Additional command-specific arguments may be passed using query strings.

Response Headers

• Content-Type – */*

Sample Request

GET /models/e32ef475e084432481655fe41348726b/commands/math-plugin/add HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:01 GMT
Content-Length: 542
Content-Type: application/json
Server: CherryPy/3.2.2

{
"result" : 5

}

See Also

• POST /models/(mid)/commands/(type)/(command)

• PUT /models/(mid)/commands/(type)/(command)

2.12.13 GET Model File

GET /models/(mid)/files/
aid Retrieves a file artifact from a model. File artifacts are effectively binary blobs that may contain arbitrary
data with an explicit content type.

102 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

Parameters

• mid (string) – Unique model identifier.

• aid (string) – File artifact id.

Response Headers

• Content-Type – The content type of the file artifact, which could be anything.

2.12.14 GET Model Parameter

GET /models/(mid)/parameters/
aid Retrieves a model parameter (name / value pair) artifact. The result is a JSON expression and may be
arbitrarily complex.

Parameters

• mid (string) – Unique model identifier.

• aid (string) – Parameter artifact id.

Response Headers

• Content-Type – application/json

Sample Request

GET /models/1385a75dd2eb4faba884cefdd0b94a56/parameters/baz HTTP/1.1
Host: localhost:8093
Content-Length: 0
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
Authorization: Basic c2x5Y2F0OnNseWNhdA==

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:04 GMT
Content-Length: 20
Content-Type: application/json
Server: CherryPy/3.2.2

{
value : [1, 2, 3],
input : true

}

See Also

• PUT /models/(mid)/parameters/(aid)

2.12.15 GET Model Resource

GET /resources/models/(mtype)/
resource Returns a custom model resource (stylesheet, font, javascript, etc).

2.12. REST API 103

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

Model plugins may register custom resources for use by the model’s user interface. This API is used when the
client needs to retrieve those resources.

Parameters

• mtype (string) – Unique model type code.

• resource (string) – Custom resource name.

Response Headers

• Content-Type – */*

Sample Request

GET /resources/models/calculator/ui.css HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:01 GMT
Content-Length: 542
Content-Type: text/css
Server: CherryPy/3.2.2

...

See Also

• GET /models/(mid)

• GET /models/(mid)/commands/(type)/(command)

2.12.16 GET Model Table Chunk

GET /models/(mid)/tables/
aid/arrays/array/chunk

Warning: This request is deprecated. Use GET /models/(mid)/arraysets/(aid)/data in-
stead.

Used to retrieve a chunk (subset of rows and columns) from a 1D arrayset array artifact. Data is returned as a
JSON array-of-arrays containing column-oriented data, one array for each column specified in the request. Both
rows and columns may be specified using arbitrary combinations of half-open ranges and individual indices.
The ordering of results (both rows and columns) always matches the order of rows and columns in the request.
Out-of-range rows or columns are ignored, in which case the results will still contain in-range data. If the caller
specifies a name using the optional “index” query parameter in the request, the response will be adjusted to
include an additional index column with the given name and zero-based row indices. The optional “sort” query
parameter can be used to return the results in sorted order.

Parameters

104 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

• mid (string) – Unique model identifier.

• aid (string) – Arrayset artifact name.

• array (int) – Array index.

Query Parameters

• rows – Chunk rows to retrieve.

• columns – Chunk columns to retrieve.

• index – Optional index column to append to the results.

• sort – Response sort order.

Response Headers

• Content-Type – application/json

Sample Request

GET /models/6b3c85df433e499e9680a135cabe3ab2/tables/test-array-set/arrays/0/chunk?
→˓rows=0,1,2,3,4,5,6,7,8,9&columns=0 HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Tue, 26 Nov 2013 16:40:16 GMT
Content-Length: 138
Content-Type: application/json
Server: CherryPy/3.2.2

{
"sort": null,
"column-names": ["int8"],
"rows": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
"data": [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]],
"columns": [0]

}

Complex Request

The following request retrieves rows [0, 10), 15, 16, and 17 and columns [2, 5) and 8:

GET /models/(mid)/tables/(aid)/arrays/(array)chunk?rows=0-10,15,16,17&columns=2-5,
→˓8

See Also

• GET /models/(mid)/tables/(aid)/arrays/(array)/metadata

• GET /models/(mid)/tables/(aid)/arrays/(array)/sorted-indices

• GET /models/(mid)/tables/(aid)/arrays/(array)/unsorted-indices

2.12. REST API 105

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

2.12.17 GET Model Table Metadata

GET /models/(mid)/tables/
aid/arrays/array/metadata

Warning: This request is deprecated. Use GET /models/(mid)/arraysets/(aid)/metadata
instead.

Used to retrieve metadata from a 1D arrayset array artifact, optimized for use as a table. The metadata for the
table describes the number of rows and columns in the table, the name and datatype of each column, and the
minimum and maximum values in each column. If the caller specifies a name using the optional “index” query
parameter in the request, the response will be adjusted to include an additional index column with the given
name and zero-based row indices.

Parameters

• mid (string) – Unique model identifier.

• aid (string) – Arrayset artifact id.

• array (int) – Array index.

Query Parameters

• index – Optional index column metadata to be appended to the results.

Response Headers

• Content-Type – application/json

Sample Request

GET /models/6b3c85df433e499e9680a135cabe3ab2/tables/test-array-set/arrays/0/
→˓metadata HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Tue, 26 Nov 2013 16:40:16 GMT
Content-Length: 395
Content-Type: application/json
Server: CherryPy/3.2.2

{
"column-types": ["int8", "int16", "int32", "int64", "uint8", "uint16", "uint32",

→˓ "uint64", "float32", "float64", "string"],
"column-min": [0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, "0"],
"column-names": ["int8", "int16", "int32", "int64", "uint8", "uint16", "uint32",

→˓ "uint64", "float32", "float64", "string"],
"row-count": 10,
"column-count": 11,
"column-max": [9, 9, 9, 9, 9, 9, 9, 9, 9.0, 9.0, "9"]

}

106 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

See Also

• GET /models/(mid)/tables/(aid)/arrays/(array)/chunk

• GET /models/(mid)/tables/(aid)/arrays/(array)/sorted-indices

• GET /models/(mid)/tables/(aid)/arrays/(array)/unsorted-indices

2.12.18 GET Model Table Sorted Indices

GET /models/(mid)/tables/
aid/arrays/array/sorted-indices

Warning: This request is deprecated. Use GET /models/(mid)/arraysets/(aid)/data in-
stead.

Given a collection of row indices and a specific sort order, return the corresponding sorted row indices.

Parameters

• mid (string) – Unique model identifier.

• aid (string) – Arrayset artifact id.

• array (int) – Array index.

Query Parameters

• rows – Row indices to be sorted.

• index – Optional index column that can be used for sorting.

• sort – Sort order.

• byteorder – Optionally return the results as binary data.

Response Headers

• Content-Type – application/json, application/octet-stream

See Also

• GET /models/(mid)/tables/(aid)/arrays/(array)/chunk

• GET /models/(mid)/tables/(aid)/arrays/(array)/metadata

• GET /models/(mid)/tables/(aid)/arrays/(array)/unsorted-indices

2.12.19 GET Model Table Unsorted Indices

GET /models/(mid)/tables/
aid/arrays/array/unsorted-indices

Warning: This request is deprecated. Use GET /models/(mid)/arraysets/(aid)/data in-
stead.

Given a collection of sorted row indices and a specific sort order, return the corresponding unsorted row indices.

2.12. REST API 107

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

Parameters

• mid (string) – Unique model identifier.

• aid (string) – Arrayset artifact id.

• array (int) – Array index.

Query Parameters

• rows – Row indices to be sorted.

• index – Optional index column that can be used for sorting.

• sort – Sort order.

• byteorder – Optionally return the results as binary data.

Response Headers

• Content-Type – application/json, application/octet-stream

See Also

• GET /models/(mid)/tables/(aid)/arrays/(array)/chunk

• GET /models/(mid)/tables/(aid)/arrays/(array)/metadata

• GET /models/(mid)/tables/(aid)/arrays/(array)/sorted-indices

2.12.20 GET Model

GET /models/(mid)
Returns a model.

Parameters

• mid (string) – Unique model identifier.

Response Headers

• Content-Type – text/html, application/json

Sample Request

GET /models/e32ef475e084432481655fe41348726b HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:01 GMT
Content-Length: 542
Content-Type: application/json
Server: CherryPy/3.2.2

{
"description": "",

(continues on next page)

108 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

(continued from previous page)

"creator": "slycat",
"artifact-types": {},
"_rev": "2-80a35c0e45a33d6654fd13a90f17624a",
"model-type": "generic",
"finished": null,
"result": null,
"message": null,
"marking": "",
"name": "test-model",
"created": "2013-11-25T20:36:01.064901",
"input-artifacts": [],
"uri": "http://localhost:8093/models/e32ef475e084432481655fe41348726b",
"project": "dbaf026f919620acbf2e961ad7325359",
"started": "2013-11-25T20:36:01.218447",
"state": "running",
"progress": 0.0,
"_id": "e32ef475e084432481655fe41348726b",
"type": "model"

}

See Also

• POST /projects/(pid)/models

• PUT /models/(mid)

• DELETE /models/(mid)

2.12.21 GET Project Cache Object

GET /projects/(pid)/cache/
key Retrieves an object from a project’s cache. Cache objects are opaque binary blobs that may contain arbitrary
data, plus an explicit content type.

Parameters

• pid – Unique project identifier.

• key (string) – Cache object identifier.

Status Codes

• 200 OK – The requested file is returned in the body of the response.

• 404 Not Found – The requested object isn’t in the cache.

Response Headers

• Content-Type – The content type of the cached object, which could be any valid MIME
type.

See Also

• DELETE /projects/(pid)/cache/(key)

• GET /remotes/(sid)/file(path)

• GET /remotes/(sid)/image(path)

2.12. REST API 109

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

• GET /remotes/(sid)/videos/(vsid)

2.12.22 GET Project Models

GET /projects/(pid)/models
Returns a list of project models.

Parameters

• pid (string) – Unique project identifier.

Response Headers

• Content-Type – application/json

2.12.23 GET Project

GET /projects/(pid)
Returns a project.

Parameters

• pid (string) – Unique project identifier.

Response Headers

• Content-Type – text/html, application/json

Sample Request

GET /projects/dbaf026f919620acbf2e961ad73243c5 HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:35:59 GMT
Content-Length: 308
Content-Type: application/json
Server: CherryPy/3.2.2

{
"description": "My test project.",
"created": "2013-11-25T20:35:59.555004",
"_rev": "1-5af189cbba8ad4e0e200b2593f2594a2",
"creator": "slycat",
"acl": {"administrators": [{"user": "slycat"}], "writers": [], "readers": []},
"_id": "dbaf026f919620acbf2e961ad73243c5",
"type": "project",
"name": "test-project"

}

110 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

See Also

• PUT /projects/(pid)

• DELETE /projects/(pid)

2.12.24 GET Projects

GET /projects
Returns the list of available projects. The HTML representation provides the main Slycat user interface.

Request Headers

• Accept – text/html or application/json

Sample Request

GET /projects HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:35:59 GMT
Content-Length: 570
Content-Type: application/json
Server: CherryPy/3.2.2

[
{

"description": "",
"created": "2013-11-25T20:35:58.955499",
"_rev": "1-a4332c471d456db74398dd8ac20f8a61",
"creator": "slycat",
"acl": {"administrators": [{"user": "slycat"}], "writers": [], "readers": []},
"_id": "dbaf026f919620acbf2e961ad732433d",
"type": "project",
"name": "bar"

},
{

"description": "",
"created": "2013-11-25T20:35:58.886682",
"_rev": "1-99142f0b92a93266b9930914808fb286",
"creator": "slycat",
"acl": {"administrators": [{"user": "slycat"}], "writers": [], "readers": []},
"_id": "dbaf026f919620acbf2e961ad7324011",
"type": "project",
"name": "foo"

}
]

2.12. REST API 111

https://tools.ietf.org/html/rfc7231#section-5.3.2

slycat Documentation, Release 1.2.0

See Also

• POST /projects

2.12.25 GET Remote File

GET /remotes/(sid)/file
path Uses an existing remote session to retrieve a remote file. The remote session must have been created
using POST /remotes. Use POST /remotes/(sid)/browse(path) to lookup remote file paths. The
returned file may be optionally cached on the server and retrieved using GET /projects/(pid)/cache/
(key).

Parameters

• sid (string) – Unique session identifier returned from POST /remotes.

• path (string) – Remote filesystem path (must be absolute).

Query Parameters

• cache – Optional cache identifier. Set to project to store the retrieved file in a project
cache.

• project – Project identifier. Required when cache is set to project.

• key – Cached object key. Must be specified when cache is set to project.

Status Codes

• 200 OK – The requested file is returned in the body of the response.

• 404 Not Found – The session doesn’t exist or has timed-out.

• 400 Bad Request – “Can’t read directory” The remote path is a directory instead of a file.

• 400 Bad Request – “File not found” The remote path doesn’t exist.

• 400 Bad Request – “Access denied” The session user doesn’t have permissions to access the
file.

Response Headers

• Content-Type – The MIME type of the response is automatically determined using the re-
quested filename.

• X-Slycat-Message – For errors, contains a human-readable description of the problem.

• X-Slycat-Hint – For errors, contains an optional description of how to fix the problem.

Sample Request

GET /remotes/505d0e463d5ed4a32bb6b0fe9a000d36/file/home/fred/checklist.txt

See Also

• GET /remotes/(sid)/image(path)

• GET /remotes/(sid)/videos/(vsid)

112 Chapter 2. Documentation:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

2.12.26 GET Remote Image

GET /remotes/(sid)/image
path Uses an existing remote session to retrieve a remote image. The remote session must have been cre-
ated using POST /remotes, and the session must have a running agent. Use POST /remotes/(sid)/
browse(path) to lookup remote file paths. The returned file may be optionally cached on the server and
retrieved using GET /projects/(pid)/cache/(key).

The caller may optionally choose to resize the image and / or convert it to another file type. Note that this
can reduce performance significantly as the remote must then decompress, resample, and recompress the image
before sending it to the client. Testing should be performed to verify that the bandwidth reduction of a smaller
image is worth the increased latency.

Parameters

• sid (string) – Unique session identifier returned from POST /remotes.

• path (string) – Remote filesystem absolute path to be retrieved.

Query Parameters

• content-type (string) – Optional image content type to return. Currently limited to
image/jpeg or image/png. If the requested content type doesn’t match the content type of
the remote image, it will be converted.

• max-size (int) – Optional maximum image size in pixels along either dimension. Im-
ages larger than this size will be resized to fit while maintaining their aspect ratio.

• max-width (int) – Optional maximum image width. Wider images will be resized to fit
while maintaining their aspect ratio.

• max-height (int) – Optional maximum image height. Taller images will be resized to
fit while maintaining their aspect ratio.

• cache – Optional cache identifier. Set to project to store the retrieved image in a project
cache.

• project – Project identifier. Required when cache is set to project.

• key – Cached object key. Must be specified when cache is set to project.

Status Codes

• 200 OK – The requested file is returned in the body of the response.

• 400 Bad Request – “Access denied” The session user doesn’t have permissions to access the
file.

• 400 Bad Request – “Agent required” This call requires a remote agent, but the current ses-
sion isn’t running an agent.

• 400 Bad Request – “Can’t read directory” The remote path is a directory instead of a file.

• 400 Bad Request – “File not found” The remote path doesn’t exist.

• 404 Not Found – The session doesn’t exist or has timed-out.

Response Headers

• Content-Type – image/jpeg or image/png, depending on the type of the remote file and
optional conversion.

• X-Slycat-Message – For errors, contains a human-readable description of the problem.

• X-Slycat-Hint – For errors, contains an optional description of how to fix the problem.

2.12. REST API 113

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

Sample Request

GET /remotes/505d0e463d5ed4a32bb6b0fe9a000d36/image/home/fred/avatar.png?content-
→˓type=image/jpeg&max-width=64

See Also

• GET /remotes/(sid)/file(path)

• GET /remotes/(sid)/videos/(vsid)

2.12.27 GET Remote Video Status

GET /remotes/(sid)/videos/
vsid/status Uses an existing remote video session to retrieve the status of a video creation command. The
remote session must have been created successfully using POST /remotes and video creation must have
been started using POST /remotes/(sid)/videos.

Parameters

• sid (string) – Unique remote session identifier.

• vsid (string) – Unique video creation session identifier.

Status Codes

• 200 OK – The status is contained in the response body.

• 400 Bad Request – “Agent required” This call requires a remote agent, but the current ses-
sion isn’t running an agent.

• 404 Not Found – If the session doesn’t exist or has timed out.

Response Headers

• Content-Type – application/json

• X-Slycat-Message – For errors, contains a human-readable description of the problem.

• X-Slycat-Hint – For errors, contains an optional description of how to fix the problem.

Response JSON Object

• ok (boolean) – Set to true if the video creation process is working, false if it has failed.

• ready (boolean) – Optional. Set to true if the video creation process has completed
successfully and the video file is ready for retrieval.

• message (string) – Human-readable message describing the current video creation state
or error.

• returncode (number) – Optional exit code from the video creation process. Note: this
is for debugging only, could be removed in the future, and should not be displayed to end-
users.

• stderr (string) – Optional capture of stderr from the video creation process. Note:
this is for debugging only, could be removed in the future, and should not be displayed to
end-users.

Sample Request

114 Chapter 2. Documentation:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

GET /remotes/505d0e463d5ed4a32bb6b0fe9a000d36/videos/
→˓431d0e463d5ed4a32bb6b0fe9a000a37/status

See Also

• POST /remotes/(sid)/videos

• GET /remotes/(sid)/videos/(vsid)

2.12.28 GET Remote Video

GET /remotes/(sid)/videos/
vsid Uses an existing remote session to retrieve a remote video. The session must have been created success-
fully using POST /remotes and video creation must have been started using POST /remotes/(sid)/
videos. The caller should not attempt retrieving a video until a call to GET /remotes/(sid)/videos/
(vsid)/status indicates that video creation is complete. The returned file may be optionally cached on the
server and retrieved using GET /projects/(pid)/cache/(key).

Parameters

• sid (string) – Unique remote session identifier.

• vsid (string) – Unique video creation session identifier.

Query Parameters

• cache – Optional cache identifier. Set to project to store the retrieved video in a project
cache.

• project – Project identifier. Required when cache is set to project.

• key – Cached object key. Must be specified when cache is set to project.

Status Codes

• 200 OK – The video has been returned in the response body.

• 206 Partial Content – A portion of the video has been returned in the response body.

• 400 Bad Request – “Agent required” This call requires a remote agent, but the current ses-
sion isn’t running an agent.

• 404 Not Found – The session doesn’t exist or has timed-out.

Response Headers

• Content-Type – video/mp4 or video/webm, depending on the original POST /remotes/
(sid)/videos request.

• X-Slycat-Message – For errors, contains a human-readable description of the problem.

• X-Slycat-Hint – For errors, contains an optional description of how to fix the problem.

Sample Request

GET /remotes/505d0e463d5ed4a32bb6b0fe9a000d36/videos/
→˓431d0e463d5ed4a32bb6b0fe9a000a37

2.12. REST API 115

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

See Also

• GET /remotes/(sid)/file(path)

• GET /remotes/(sid)/image(path)

2.12.29 GET User

GET /users/(uid)
Retrieve directory information for a given user.

Parameters

• uid (string) – User id to retrieve. As a special case, callers may pass - as the uid to
request information about the currently-logged-in user.

Status Codes

• 200 OK – User metadata retrieved.

• 404 Not Found – Unknown user.

Response Headers

• Content-Type – application/json

Response JSON Object

• uid (string) – User id of the requested user.

• email (string) – Email address of the requested user.

• name (string) – Full name of the requested user.

Sample Response

{
"uid": "frfreder",
"email": "fred@example.com",
"name": "Fred R. Frederickson",

}

2.12.30 POST Model Arrayset Data

GET /models/(mid)/arraysets/
aid/data Retrieve data stored in arrayset darray attributes. The caller may request data stored using any
combination of arrays, attributes, and hyperslices.

Parameters

• mid (string) – Unique model identifier.

• aid (string) – Arrayset artifact id.

Request Headers

• Content-Type – application/json

Request JSON Object

• hyperchunks (string) – The request must contain a parameter hyperchunks that spec-
ifies the arrays, attributes, and hyperslices to be returned, in Hyperchunks format.

116 Chapter 2. Documentation:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

• byteorder (string) – The request may optionally contain a parameter byteorder that
specifies that the response should be binary data with the given endianness. The byteorder
parameter must be either “little” or “big”. Note that the byteorder parameter can only be
used if every attribute in every hyperchunk is of numeric type. If the byteorder parameter
is used, the request must accept application/octet-stream as the result content-type, and the
response data will contain contiguous raw data bytes in the given byteorder, in the same
order as the requested hyperchunks / hyperslices. For multi-dimension arrays, hyperslice
array elements will be in “C” order (the last coordinate varies the fastest).

If the byteorder parameter isn’t specified, the response data will be a JSON-encoded array
with length equal to the total number of hyperslices. Each element in this top level array will
be an array containing the data for the corresponding hyperslice, in the same order as the
requested hyperchunks / hyperslices. For multi-dimension arrays, data for the corresponding
hyperslice will be nested further, in “C” order (the last

Response Headers

• Content-Type – application/json

The following request will return all of the data for array 0, attribute 1 from an arrayset artifact with id “foo”:

Sample Request

POST /models/6706e78890884845b6c709572a140681/arraysets/foo/dataH TTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/octet-stream
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

{
hyperchunks: "0/1/...,"
byteorder: "little"

}

Sample Response

HTTP/1.1 200 OK
Date: Tue, 26 Nov 2013 16:40:04 GMT
Content-Length: 80
Content-Type: application/octet-stream
Server: CherryPy/3.2.2

..

See Also

• Hyperchunks

• GET /models/(mid)/arraysets/(aid)/metadata

• PUT /models/(mid)/arraysets/(aid)/data

2.12.31 POST Agent Function

POST /remotes/run-agent-function
Uses an existing remote sessions to submit a predefined Slycat function to a cluster running SLURM as a job.

2.12. REST API 117

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

The session must have been created successfully using POST /remotes

Request JSON Object

• sid (string) – Unique remote session identifier.

• wckey (string) – Workload characterization key.

• nnodes (int) – Number of nodes requested for the job.

• partition (string) – Name of the partition where the job will be run.

• ntasks_per_node (int) – Number of tasks to run on a node.

• ntasks (int) – Number of tasks allocated for the job.

• ncpu_per_task (int) – Number of CPUs per task requested for the job.

• time_hours (int) – Number of hours requested for the job.

• time_minutes (int) – Number of minutes requested for the job.

• time_seconds (int) – Number of seconds requested for the job.

• fn (string) – Name of the Slycat predefined function.

Status Codes

• 200 OK – The response contains the command, its output and possible errors.

• 400 Bad Request – The request failed due to invalid parameters or a Slycat agent issue.

• 500 Internal Server Error – The request failed due to no Slycat agent present and configured
on the remote system.

Response Headers

• Content-Type – application/json

• X-Slycat-Message – For errors, contains a human-readable description of the problem.

Response JSON Object

• jid (int) – Job ID.

• errors (string) – Error information, if any.

Sample Request

POST /remotes/run-agent-function

{
sid: "505d0e463d5ed4a32bb6b0fe9a000d36",
wckey: "user_00001",
nnodes: 1,
partition: "partition_name",
ntasks_per_node: 1,
ntasks: 1,
ncpu_per_task: 4,
time_hours: 0,
time_minutes: 5,
time_seconds: 0,
fn: "slycat_predefined_function"

}

Sample Response

118 Chapter 2. Documentation:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

{
"jid": 123456,
"errors": ""

}

See Also

• POST /remotes/cancel-job

• POST /remotes/checkjob

• POST /remotes/get-job-output

• POST /remotes/launch

• POST /remotes/submit-batch

2.12.32 POST Cancel Job

POST /remotes/cancel-job
Uses an existing remote session to cancel a job submitted via the SLURM interface on a remote cluster. The
session must have been created successfully using POST /remotes.

Request JSON Object

• sid (string) – Unique remote session identifier.

• jid (string) – Job ID.

Status Codes

• 200 OK – The response contains the command, its output and possible errors.

• 400 Bad Request – The request failed due to invalid parameters or a Slycat agent issue.

• 500 Internal Server Error – The request failed due to no Slycat agent present and configured
on the remote system.

Response Headers

• Content-Type – application/json

• X-Slycat-Message – For errors, contains a human-readable description of the problem.

Response JSON Object

• jid (int) – Job ID.

• output (string) – Output information, if any.

• errors (string) – Error information, if any.

Sample Request

POST /remotes/checkjob

{
sid: "505d0e463d5ed4a32bb6b0fe9a000d36",
jid: 123456

}

Sample Response

2.12. REST API 119

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

{
"jid": 123456,
"output": "",
"errors": ""

}

See Also

• POST /remotes/checkjob

• POST /remotes/get-job-output

• POST /remotes/launch

• POST /remotes/run-agent-function

• POST /remotes/submit-batch

2.12.33 POST Check Job

POST /remotes/checkjob
Uses an existing remote session to query the status of submitted SLURM job on a cluster. The session must
have been created successfully using POST /remotes.

Request JSON Object

• sid (string) – Unique remote session identifier.

• jid (string) – Job ID.

Status Codes

• 200 OK – The response contains the command, its output and possible errors.

• 400 Bad Request – The request failed due to invalid parameters or a Slycat agent issue.

• 500 Internal Server Error – The request failed due to no Slycat agent present and configured
on the remote system.

Response Headers

• Content-Type – application/json

• X-Slycat-Message – For errors, contains a human-readable description of the problem.

Response JSON Object

• jid (int) – Job ID.

• status (string) – Status for the queried job.

• errors (string) – Error information, if any.

The following status are reported: PENDING, RUNNING, COMPLETING, COMPLETED and CANCELLED.

Sample Request

POST /remotes/checkjob

{
sid: "505d0e463d5ed4a32bb6b0fe9a000d36",

(continues on next page)

120 Chapter 2. Documentation:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

(continued from previous page)

jid: 123456
}

Sample Response

{
"jid": 123456,
"status": "PENDING",
"errors": ""

}

See Also

• POST /remotes/cancel-job

• POST /remotes/get-job-output

• POST /remotes/launch

• POST /remotes/run-agent-function

• POST /remotes/submit-batch

2.12.34 POST Events

POST /events/(event)
Insert a client-side event into the server log. Clients should use this API to record any user interaction events
that may be of later interest for subsequent analytics. The structure of the request URI following the initial
“/events/” is left to the client. Note that the request body is ignored.

Parameters

• event (string) – Path-like user interaction to be logged.

Sample Requests

The following is a hypothetical stream of events logged as a user interacts with a model. The structure and
meaning of the events are completely client-driven.

POST /events/models/0bfb94cba9654faf904b6fe8b2aab603/select/component/3
POST /events/models/0bfb94cba9654faf904b6fe8b2aab603/select/variable/1
POST /events/models/0bfb94cba9654faf904b6fe8b2aab603/sort/variable/2
POST /events/models/0bfb94cba9654faf904b6fe8b2aab603/pan?dx=34&dy=2
POST /events/models/0bfb94cba9654faf904b6fe8b2aab603/zoom?factor=2.3

2.12.35 POST Get Job Output

POST /remotes/get-job-output
Uses an existing remote sessions to fetch the content of a SLURM output file on a cluster. The session must
have been created successfully using POST /remotes

Request JSON Object

• sid (string) – Unique remote session identifier.

• jid (string) – Job ID.

2.12. REST API 121

slycat Documentation, Release 1.2.0

• path (string) – Path of the SLURM output file, if different from the login node.

Status Codes

• 200 OK – The response contains the command, its output and possible errors.

• 400 Bad Request – The request failed due to invalid parameters or a Slycat agent issue.

• 500 Internal Server Error – The request failed due to no Slycat agent present and configured
on the remote system.

Response Headers

• Content-Type – application/json

• X-Slycat-Message – For errors, contains a human-readable description of the problem.

Response JSON Object

• jid (int) – Job ID.

• output (string) – Content of the SLURM output file.

• errors (string) – Error information, if any.

Note that the path parameter is optional and the request will look for the output file within the home directory
of a login node. Also, the content of the output file could potentially contain many lines of text.

Sample Request

POST /remotes/get-job-output

{
sid: "505d0e463d5ed4a32bb6b0fe9a000d36",
jid: 123456

}

Sample Response

{
"jid": 123456,
"output": "test",
"errors": ""

}

See Also

• POST /remotes/cancel-job

• POST /remotes/checkjob

• POST /remotes/launch

• POST /remotes/run-agent-function

• POST /remotes/submit-batch

2.12.36 POST Login

POST /login
Creates a session and then returns the session cookie

122 Chapter 2. Documentation:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

Request Headers

• Content-Type – application/json

Request JSON Object

• bit encoded string name (64) – username

• bit encoded string password (64) – password

• url (object) – origin url from which you came

Response Headers

• Content-Type – application/json

Response JSON Object

• success (boolean) – boolean representing successful login

• target (string) – original url user tried to access (for a redirect after login)

Sample Request

POST /login HTTP/1.1
Host: localhost:8092
Content-Length: 45
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.2.1.el6.x86_64
content-type: application/json

{
"user_name":"64 bit encoded slycat(c2x5Y2F0)",
"password":"64 bit encoded slycat(c2x5Y2F0)",
"location":{

"href":"https://192.168.99.100/login/slycat-login.html",
"origin":"https://192.168.99.100",
"protocol":"https:",
"host":"192.168.99.100",
"hostname":"192.168.99.100",
"port":"",
"pathname":"/login/slycat-login.html",
"search":"",
"hash":""
}

}

Sample Response

HTTP/1.1 201 Project created.
Date: Thu, 11 Apr 2013 21:30:16 GMT
Content-Length: 42
Content-Type: application/json
Set-Cookie:"slycatauth=xyz;httponly;Max-Age=60000;Path=/;secure;
→˓slycattimeout=timeout;Max-Age=60000;Path=/"
Location: http://localhost:8092/projects/505d0e463d5ed4a32bb6b0fe9a000d36
Server: CherryPy/3.2.2

{"target": "https://192.168.99.100/projects","success":true}

2.12. REST API 123

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

See Also

• DELETE /logout

2.12.37 POST Model Command

POST /models/(mid)/commands/
type/command Execute a custom model command.

Plugins may register custom commands to be executed on the server, using an existing model as context. Custom
commands are used to perform computation on the server instead of the client, and would typically use model
artifacts as inputs.

Parameters

• mid (string) – Unique model identifier.

• type (string) – Unique command category.

• command (string) – Custom command name.

Additional command-specific arguments may be passed using query strings.

Response Headers

• Content-Type – */*

Sample Request

POST /models/e32ef475e084432481655fe41348726b/commands/math-plugin/add HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:01 GMT
Content-Length: 542
Content-Type: application/json
Server: CherryPy/3.2.2

{
"result" : 5

}

See Also

• GET /models/(mid)/commands/(type)/(command)

• PUT /models/(mid)/commands/(type)/(command)

2.12.38 POST Model Finish

POST /models/(mid)/finish
Finish (internally compute) a waiting model. The model must be in the waiting state.

124 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

Parameters

• mid – Unique model identifier.

See Also

• GET /models/(mid)

• PUT /models/(mid)

• DELETE /models/(mid)

2.12.39 POST Project Bookmark

POST /projects/(pid)/bookmarks
Stores a bookmark - an arbitrary JSON object that captures client-side state - returning a unique identifier that
can be used to retrieve that state.

Note that the bookmark contents are canonicalized and hashed to produce the returned identifier, so all book-
marks containing the same state automatically share the same id.

Typically, a client would store a bookmark anytime the client state changes as a user is interacting with a model,
e.g. making selections, sorting, choosing color maps, etc. The client can then use the returned bookmark id to
restore that state when the user returns to a given model. We strongly recommend that web browsers incorporate
the returned bookmark id into the browser’s URL, so the resulting visualization can be saved as a browser
bookmark, emailed to a colleague, etc.

Parameters

• pid (string) – Unique project identifier.

Request Headers

• Content-Type – application/json

Response Headers

• Content-Type – application/json

Response JSON Object

• id (string) – Unique bookmark identifier.

Sample Request

POST /projects/957cb70e7a31529d266fb0c110000f27/bookmarks HTTP/1.1
Host: localhost:8092
Content-Length: 43
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.6.1.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{"selected-row": 13, "selected-column": 34}

Sample Response

2.12. REST API 125

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

HTTP/1.1 201 Bookmark stored.
Date: Thu, 25 Apr 2013 21:33:44 GMT
Content-Length: 42
Content-Type: application/json
Location: http://localhost:8092/bookmarks/da47466b64216fbb5f782bc2487ceed0
Server: CherryPy/3.2.2

{"id": "da47466b64216fbb5f782bc2487ceed0"}

See Also

• GET /bookmarks/(bid)

2.12.40 POST Project Models

POST /projects/(pid)/models
Adds a new, empty model to a project.

Parameters

• pid (string) – Unique project identifier.

Request Headers

• Content-Type – application/json

Request JSON Object

• model-type (string) – Model type identifier.

• name (string) – Model name.

• description (string) – Model description.

• marking (string) – Model marking identifier.

Response Headers

• Content-Type – application/json

Response JSON Object

• id (string) – Unique model identifier.

Sample Request

POST /projects/505d0e463d5ed4a32bb6b0fe9a000d36/models HTTP/1.1
Host: localhost:8092
Content-Length: 73
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.2.1.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{"model-type": "generic", "description": "", "name": "Model", "marking": ""}

Sample Response

126 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

HTTP/1.1 202 Model scheduled for creation.
Date: Thu, 11 Apr 2013 21:30:16 GMT
Content-Length: 85
Content-Type: application/json
Server: CherryPy/3.2.2

{"id": "7f4b92c00af7465eb594a2ca77d0df91"}

See Also

• GET /models/(mid)

• PUT /models/(mid)

• DELETE /models/(mid)

2.12.41 POST Projects

POST /projects
Creates a new project. The caller must supply a human-readable project name. The caller may supply a human
readable project description and/or access control list (ACL). The results will return the ID of the newly-created
project.

If an ACL is not specified, the project will have a default ACL with the project administrator set to the user
creating the project, and no project readers or writers.

Request Headers

• Content-Type – application/json

Request JSON Object

• name (string) – New project name.

• description (string) – New project description.

• acl (object) – New project access control list.

Response Headers

• Content-Type – application/json

Response JSON Object

• id (string) – Unique project identifier.

Sample Request

POST /projects HTTP/1.1
Host: localhost:8092
Content-Length: 45
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.2.1.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{"name": "CCA Model Test", "description": ""}

Sample Response

2.12. REST API 127

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

HTTP/1.1 201 Project created.
Date: Thu, 11 Apr 2013 21:30:16 GMT
Content-Length: 42
Content-Type: application/json
Location: http://localhost:8092/projects/505d0e463d5ed4a32bb6b0fe9a000d36
Server: CherryPy/3.2.2

{"id": "505d0e463d5ed4a32bb6b0fe9a000d36"}

See Also

• GET /projects

2.12.42 POST Remote Browse

POST /remotes/(sid)/browse
path Uses an existing remote session to retrieve remote filesystem information. The session must have been
created successfully using POST /remotes. The caller may supply additional parameters to filter directories
and files in the results, based on regular expressions.

Parameters

• sid (string) – Unique remote session identifier.

• path (string) – Remote filesystem path (must be absolute).

Request Headers

• Content-Type – application/json

Request JSON Object

• directory-reject (string) – Optional regular expression for filtering directories.

• directory-allow (string) – Optional regular expression for retaining directories.

• file-reject (string) – Optional regular expression for filtering files.

• file-allow (string) – Optional regular expression for allowing files.

Status Codes

• 200 OK – The response contains the requested browsing information.

• 400 Bad Request – The browse request failed due to invalid parameters (e.g: the path doesn’t
exist).

• 404 Not Found – The remote session ID was invalid or expired.

Response Headers

• Content-Type – application/json

• X-Slycat-Message – For errors, contains a human-readable description of the problem.

• X-Slycat-Hint – For errors, contains an optional description of how to fix the problem.

Response JSON Object

• path (string) – Remote filesystem path.

• names (array) – Array of string filenames contained within the remote filesystem path.

128 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

• sizes (array) – Array of integer file sizes.

• types (array) – Array of string file types, “f” for regular files, “d” for directories.

• mtimes (array) – Array of string file modification times, in ISO-8601 format.

• mime-types (array) – Array of string MIME types.

The regular expression parameters are matched against full file / directory paths. If a file / directory matches a
reject expression, it will not be included in the results, unless it also matches an allow expression. So, to remove
JPEG files from the results:

file-reject: "[.]jpg$|[.]jpeg$"

but to only return CSV files:

file-reject: ".*",
file-allow: "[.]csv$"

Sample Request

POST /remotes/505d0e463d5ed4a32bb6b0fe9a000d36/browse/home/fred

{
file-reject: "[.]jpg$"

}

Sample Response

{
"path" : "/home/fred",
"names" : ["a.txt", "b.png", "c.csv", "subdir"],
"sizes" : [1264, 456730, 78005, 4096],
"types' : ["f", "f", "f", "d"],
"mtimes" : ["2015-03-03T16:52:34.599466", "2015-03-02T21:03:50", "2015-03-

→˓02T21:03:50", "2015-03-02T21:03:50"],
"mime-types" : ["text/plain", "image/png", "text/csv", null],

}

See Also

• POST /remotes

• GET /remotes/(sid)/file(path)

• GET /remotes/(sid)/image(path)

• POST /remotes/(sid)/videos

2.12.43 POST Remote Launch

POST /remotes/launch
Uses an existing remote session to submit a command. The session must have been created successfully using
POST /remotes.

Request JSON Object

• sid (string) – Unique remote session identifier.

2.12. REST API 129

slycat Documentation, Release 1.2.0

• command (string) – command to be ran on the remote system.

Status Codes

• 200 OK – The response contains the command, its output and possible errors.

• 400 Bad Request – The request failed due to invalid parameters or a Slycat agent issue.

• 500 Internal Server Error – The request failed due to a SSH exception.

Response Headers

• Content-Type – application/json

• X-Slycat-Message – For errors, contains a human-readable description of the problem.

Response JSON Object

• command (string) – Command issued to the remote system.

• output (string) – Output of the command.

• errors (string) – Error information, if any.

Sample Request

POST /remotes/launch

{
sid: "505d0e463d5ed4a32bb6b0fe9a000d36",
command: "echo test"

}

Sample Response

{
"command": "echo test",
"output": "test",
"errors": ""

}

See Also

• POST /remotes/cancel-job

• POST /remotes/checkjob

• POST /remotes/get-job-output

• POST /remotes/run-agent-function

• POST /remotes/submit-batch

2.12.44 POST Remotes

POST /remotes
Creates a new remote connection from the Slycat server to another host. The caller must supply a remote
hostname, username, and password.

If the connection is created successfully, a unique session ID is returned. The client must use the session ID in
subsequent requests.

130 Chapter 2. Documentation:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

Request Headers

• Content-Type – application/json

Request JSON Object

• hostname (string) – Remote hostname.

• username (string) – Remote host username.

• password (string) – Remote host password.

• agent (boolean) – (optional) Create an agent when the connection is established. By
default, agents are created automatically if the hostname has an agent configuration. Use
this parameter to explicitly require / prevent agent creation.

Status Codes

• 200 OK – The connection was created successfully.

• 400 Bad Request – “Missing agent configuration” The server isn’t configured to start an
agent on the given hostname.

• 403 Forbidden – “Remote authentication failed” Authentication of the provided username
and password failed.

• 500 Internal Server Error – “Missing agent configuration” The server isn’t properly config-
ured to start an agent on the given hostname.

• 500 Internal Server Error – “Agent startup failed” The server couldn’t start an agent on the
given hostname.

• 500 Internal Server Error – “Remote connection failed” Unknown failure making the remote
connection.

Response Headers

• Content-Type – application/json

Response JSON Object

• sid (string) – Unique remote session identifier.

Sample Request

POST /remotes HTTP/1.1
Host: localhost:8092
Content-Length: 45
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Remote: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.2.1.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{"hostname":"example.com", "username":"fred", "password":"foobar"}

Sample Response

HTTP/1.1 200 OK.
Date: Thu, 11 Apr 2013 21:30:16 GMT
Content-Length: 42
Content-Type: application/json
Location: http://localhost:8092/projects/505d0e463d5ed4a32bb6b0fe9a000d36
Server: CherryPy/3.2.2

(continues on next page)

2.12. REST API 131

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

(continued from previous page)

{"sid": "505d0e463d5ed4a32bb6b0fe9a000d36"}

See Also

• DELETE /remotes/(sid)

• POST /remotes/(sid)/browse(path)

2.12.45 POST Submit Batch

POST /remotes/submit-batch
Uses an existing remote sessions to submit a batch file to start a job on a cluster running SLURM. The session
must have been created successfully using POST /remotes.

Request JSON Object

• sid (string) – Unique remote session identifier.

• filename (string) – Name for the batch file.

Status Codes

• 200 OK – The response contains the command, its output and possible errors.

• 400 Bad Request – The request failed due to invalid parameters or a Slycat agent issue.

• 500 Internal Server Error – The request failed due to no Slycat agent present and configured
on the remote system.

Response Headers

• Content-Type – application/json

• X-Slycat-Message – For errors, contains a human-readable description of the problem.

Response JSON Object

• filename (string) – Name of the file submitted in the request.

• jid (int) – Job ID.

• errors (string) – Error information, if any.

Sample Request

POST /remotes/submit-batch

{
sid: "505d0e463d5ed4a32bb6b0fe9a000d36",
filename: "/home/jdoe/batch.test.bash"

}

Sample Response

{
"filename": "/home/jdoe/batch.test.bash",
"jid": 123456,
"errors": ""

}

132 Chapter 2. Documentation:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

See Also

• POST /remotes/cancel-job

• POST /remotes/checkjob

• POST /remotes/get-job-output

• POST /remotes/launch

• POST /remotes/run-agent-function

2.12.46 POST Uploads

POST /uploads
Create an upload session used to upload files for storage as model artifacts. Once an upload session has been cre-
ated, use PUT /uploads/(uid)/files/(fid)/parts/(pid) to upload files directly from the client
to the server or from a remote host to the server using a remote session.

In either case this call must include the id of the model to receive new artifacts, a boolean “input” parameter
to specify whether the created artifacts are input artifacts, the name of a parsing plugin in “parser”, and one or
more artifact ids using “aids”. Any additional parameters will be passed unchanged to the parsing plugin for use
as plugin-specific parsing parameters.

The set of parsing plugins will vary based on server configuration, and parsing plugins have wide latitude in
how they map parsed file data to model artifacts. For example, the slycat-blob-parser plugin will store 𝑁 files
as unparsed model file artifacts, and thus requires 𝑁 corresponding artifact ids to use for storage. Similarly, the
slycat-csv-parser plugin stores 𝑁 parsed files as arrayset artifacts, and also requires 𝑁 artifact ids. However,
more sophisticated parsing plugins could split one file into multiple artifacts, combine multiple files into one
artifact, or store any other combination of 𝑀 files into 𝑁 artifacts.

Request Headers

• Content-Type – application/json

Request JSON Object

• mid (string) – Unique model identifier.

• input (string) – Set to “true” to store results as input artifacts.

• parser (string) – Parsing plugin name.

• aids (array) – Artifact ids for storage.

Status Codes

• 200 OK – The new upload session was created, and the response contains the new session
id.

• 400 Bad Request – An upload session couldn’t be created due to invalid parameters (e.g:
unknown model, unknown parser, invalid parser parameters).

• 403 Forbidden – Client doesn’t have write access to the given model

Response Headers

• Content-Type – application/json

Response JSON Object

• id (string) – New upload session id.

2.12. REST API 133

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

See Also

• PUT /uploads/(uid)/files/(fid)/parts/(pid)

2.12.47 POST Upload Finished

POST /uploads/(uid)/finished
Notify the server that all files have been uploaded for the given upload session, and processing can begin. The
request must include the uploaded parameter, which specifies the number of files that were uploaded, and the
number of parts in each file. The server uses this information to validate that it received every part of every file
that the client sent.

Parameters

• uid (string) – Unique upload session identifier.

Request Headers

• Content-Type – application/json

Request JSON Object

• uploaded (array) – array containing the number of parts 𝑀 for every uploaded file 𝑁 .

Status Codes

• 202 Accepted – The server has validated all of the uploaded data, and will begin the parsing
process.

• 400 Bad Request – “Upload incomplete” The server did not receive all of the file parts
specified in the uploaded parameter. Parsing will not begin until the missing parts have
been uploaded and POST /uploads/(uid)/finished is called again.

• 400 Bad Request – “Client confused” The server received more file parts than those speci-
fied in the uploaded parameter. Parsing will not begin unless POST /uploads/(uid)/
finished is called again with the correct part counts in uploaded.

Response Headers

• Content-Type – application/json

Response JSON Object

• missing (array) – array containing a [fid, pid] tuple for every file part that wasn’t up-
loaded successfully.

See Also

• PUT /uploads/(uid)/files/(fid)/parts/(pid)

• DELETE /uploads/(uid)

2.12.48 PUT Model Arrayset Array

PUT /models/(mid)/arraysets/
aid/arrays/array Adds an array to an arrayset, ready to upload data. The arrayset must already have been
initialized with PUT /models/(mid)/arraysets/(aid).

Parameters

134 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

• mid (string) – Unique model identifier.

• aid (string) – Unique artifact id.

• array (int) – Unique array index.

Request Headers

• Content-Type – application/json

Request JSON Object

• attributes (object) – New array attributes.

• dimensions (object) – New array dimensions.

Sample Request

PUT /models/6f48db3de2b6416091d31e93814a22ae/arraysets/test-array-set/arrays/0
→˓HTTP/1.1
Host: localhost:8093
Content-Length: 203
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{
"attributes": [
{"type": "int64", "name": "integer"},
{"type": "float64", "name": "float"},
{"type": "string", "name": "string"}],

"dimensions": [
{"end": 10, "begin": 0, "type": "int64", "name": "row"}]

}

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:07 GMT
Content-Length: 4
Content-Type: application/json
Server: CherryPy/3.2.2

null

See Also

• PUT /models/(mid)/arraysets/(aid)

• PUT /models/(mid)/arraysets/(aid)/data

2.12.49 PUT Model Arrayset Data

PUT /models/(mid)/arraysets/
aid/data Upload data to be stored in arrayset array attributes. The request may contain data to be stored in any
combinations of arrays, attributes, and hyperslices. The destination array(s) must have already been initialized
with PUT /models/(mid)/arraysets/(aid)/arrays/(array).

2.12. REST API 135

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

Parameters

• mid (string) – Unique model identifier.

• aid (string) – Unique artifact id.

Request Headers

• Content-Type – multipart/form-data

Form Parameters

• hyperchunks – (Required) The arrays, attributes, and hyperslices to be overwritten, in
Hyperchunks format.

• byteorder – (Optional) Specifies that the request contains binary data with the given
endianness.

The byteorder parameter must be either “little” or “big”. Note that the byteorder parameter
can only be used if every attribute in every hyperchunk is of numeric type.

• data – (Required) The data to be stored.

If the byteorder is specified, the request data must contain contiguous raw data bytes in the
given byteorder, in the same order as the hyperchunks / hyperslices. For multi-dimension
arrays, hyperslice array elements must be in “C” order.

If the byteorder parameter isn’t specified, the request data must contain a JSON-encoded
array with length equal to the total number of hyperslices. Each element in this top level ar-
ray must be an array containing the data for the corresponding hyperslice, in the same order
as the hyperchunks / hyperslices. For multi-dimension arrays, data for the corresponding
hyperslice will be nested further.

Sample Request

The following request would write data in binary format to the following locations:

• Element number 5 in vector array 0, attribute 1

• A half-open range of elements [10-20) in vector array 2, attribute 3

• A 4x4 subset of elements in matrix array 4, attribute 5

• Elements [0-10) and [20-30) in vector array 6, attribute 7

PUT /models/25f1cdb62c34465286cecbaeccc1460d/arraysets/test-array-set/data HTTP/1.
→˓1
Host: localhost:8093
Content-Length: 470
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
Content-Type: multipart/form-data; boundary=573af150d64b4d70b35689f41c136ed3
Authorization: Basic c2x5Y2F0OnNseWNhdA==

--573af150d64b4d70b35689f41c136ed3
Content-Disposition: form-data; name="byteorder"

little
--573af150d64b4d70b35689f41c136ed3
Content-Disposition: form-data; name="hyperchunks"

0/1/5;2/3/10:20;4/5/0:4,0:4;6/7/0:10|20:30

(continues on next page)

136 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

(continued from previous page)

--573af150d64b4d70b35689f41c136ed3
Content-Disposition: form-data; name="data"; filename="data"
Content-Type: application/octet-stream

..
--573af150d64b4d70b35689f41c136ed3--

Sample Response

HTTP/1.1 200 OK
Date: Tue, 26 Nov 2013 16:40:05 GMT
Content-Length: 4
Content-Type: application/json
Server: CherryPy/3.2.2

null

See Also

• Hyperchunks

• PUT /models/(mid)/arraysets/(aid)

• PUT /models/(mid)/arraysets/(aid)/arrays/(array)

2.12.50 PUT Model Arrayset

PUT /models/(mid)/arraysets/
aid Initialize an arrayset, a collection of zero-to-many arrays.

Parameters

• mid (string) – Unique model identifier.

• aid (string) – Unique artifact id.

Request Headers

• Content-Type – application/json

Request JSON Object

• input (bool) – Set to true if this arrayset is a model input.

Sample Request

PUT /models/6f48db3de2b6416091d31e93814a22ae/arraysets/test-array-set HTTP/1.1
Host: localhost:8093
Content-Length: 2
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{ input : true }

Sample Response

2.12. REST API 137

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:07 GMT
Content-Length: 0
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.2.2

See Also

• PUT /models/(mid)/arraysets/(aid)/arrays/(array)

• PUT /models/(mid)/arraysets/(aid)/data

2.12.51 PUT Model Command

PUT /models/(mid)/commands/
type/command Execute a custom model command.

Plugins may register custom commands to be executed on the server, using an existing model as context. Custom
commands are used to perform computation on the server instead of the client, and would typically use model
artifacts as inputs.

Parameters

• mid (string) – Unique model identifier.

• type (string) – Unique command category.

• command (string) – Custom command name.

Additional command-specific arguments may be passed using query strings.

Response Headers

• Content-Type – */*

Sample Request

PUT /models/e32ef475e084432481655fe41348726b/commands/math-plugin/add HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:01 GMT
Content-Length: 542
Content-Type: application/json
Server: CherryPy/3.2.2

{
"result" : 5

}

138 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

See Also

• GET /models/(mid)/commands/(type)/(command)

• POST /models/(mid)/commands/(type)/(command)

2.12.52 PUT Model Inputs

PUT /models/(mid)/inputs
Copies the input artifacts from one model to another. Both models must be part of the same project. By default,
array artifacts are copied by reference instead of value for efficiency.

Parameters

• mid (string) – Unique model identifier.

Request Headers

• Content-Type – application/json

Request JSON Object

• sid (string) – Unique identifier of the source model.

• deep-copy (bool) – Optional, make deep copies of input data if “true”.

2.12.53 PUT Model Parameter

PUT /models/(mid)/parameters/
aid Stores a model parameter (name / value pair) artifact. The value is a JSON expression and may be arbitrarily
complex.

Parameters

• mid (string) – Unique model identifier.

• aid (string) – Unique artifact id (parameter name).

Request Headers

• Content-Type – application/json

Request JSON Object

• value (object) – New parameter value.

• input (bool) – Set to true if the parameter is a model input.

Sample Request

PUT /models/1385a75dd2eb4faba884cefdd0b94a56/parameters/baz HTTP/1.1
Host: localhost:8093
Content-Length: 20
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{
value : [1, 2, 3],

(continues on next page)

2.12. REST API 139

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

(continued from previous page)

input : true
}

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:04 GMT
Content-Length: 0
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.2.2

See Also

• GET /models/(mid)/parameters/(aid)

2.12.54 PUT Model

PUT /models/(mid)
Modifies a model. Callers may change the model name, description, state, result status, progress, and message.

Parameters

• mid (string) – Unique model identifier.

Request Headers

• Content-Type – application/json

Request JSON Object

• name (string) – optional, New model name.

• description (string) – optional, New model description.

• state (string) – optional, New model state.

• progress (float) – optional, New model progress percent.

• message (string) – optional, New model status message.

See Also

• GET /models/(mid)

• POST /models/(mid)/finish

• DELETE /models/(mid)

2.12.55 PUT Project

PUT /projects/(pid)
Modifies a project. Callers may use PUT to specify a new name, description, or access control list (ACL) for
the project.

Parameters

• pid (string) – Unique project identifier.

140 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

slycat Documentation, Release 1.2.0

Request JSON Object

• name (string) – optional, New project name.

• description (string) – optional, New project description.

• acl (object) – optional, New project access control list.

Sample Request

PUT /projects/dbaf026f919620acbf2e961ad73243c5 HTTP/1.1
Host: localhost:8093
Content-Length: 176
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{
"acl": {"administrators": [{"user": "slycat"}], "writers": [{"user": "foo"}],

→˓"readers": [{"user": "bar"}]},
"name": "modified-project",
"description": "My modified project."

}

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:35:59 GMT
Content-Length: 4
Content-Type: application/json
Server: CherryPy/3.2.2

null

See Also

• GET /projects/(pid)

• DELETE /projects/(pid)

2.12.56 PUT Upload File Part

PUT /uploads/(uid)/files/
fid/parts/pid Upload a file (or part of a file) as part of an upload session created with POST /uploads.

Use the “pid” and “fid” parameters to specify that the data being uploaded is for part 𝑀 of file 𝑁 . To upload a
file from the client, specify the “file” parameter. To upload a remote file, specify the “sid” and “path” parameters
with a session id and remote filepath for the file to upload.

Parameters

• uid (string) – Unique upload session identifier.

• fid (integer) – Zero-based file index of the data to be uploaded.

• pid (integer) – Zero-based part index of the data to be uploaded.

Request Headers

2.12. REST API 141

slycat Documentation, Release 1.2.0

• Content-Type – form/multipart

Form Parameters

• file – Local file for upload.

• path – Remote host absolute filesystem path.

• sid – Remote session id.

Status Codes

• 200 OK – The data was uploaded successfully.

See Also

• POST /uploads

• POST /uploads/(uid)/finished

2.13 Javascript API

For the convenience of Javascript clients and Slycat plugin code, we provide a set of custom AMD modules containing
useful components, along with wrappers around the REST API.

2.13.1 slycat-login-controls

The slycat-login-controls AMD module registers a Knockout component of the same name. The slycat-login-controls
component provides a standard GUI widget for selecting a username and password to complete a login.

Note: you don’t need to import the slycat-login-controls module using require() or define() - it registers the
knockout component automatically at startup.

To use slycat-login-controls, create ko.observable() objects for each of the login parameters, including the
username and password, and bind them to the page DOM:

var page =
{

username: ko.observable("fred"),
password: ko.observable(""),

};

ko.applyBindings(page);

Then, embed the slycat-login-controls component in your markup and bind your observables to the component param-
eters:

<p>Login to orbiting brain lasers:</p>
<slycat-login-controls params="

username: username,
password: password,
">

</slycat-login-controls>

Now, changes to any of the input parameters automatically update the login controls, and user interaction with the
login controls will update the username and password observables.

142 Chapter 2. Documentation:

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://en.wikipedia.org/wiki/Asynchronous_module_definition
http://knockoutjs.com

slycat Documentation, Release 1.2.0

The full set of parameters supported by slycat-login-controls are as follows:

• username, ko.observable(): String username to be entered by the user. If this parameter is null or empty,
it will default to the last-used username.

• password, ko.observable(): String password to be entered by the user.

• status, ko.observable(): Optional string status message to be displayed under the controls.

• status_type, ko.observable(): Optional string status type that controls the appearance of the status mes-
sage. Must be one of “success”, “info”, “warning”, or “danger”.

• enable, ko.observable(): Optional boolean value to enable / disable the controls.

• focus, ko.observable(): Optional, used to focus the controls. Set to “username” to focus the username
control, “password” to focus the password control, or true to automatically choose which control to focus.
Because the caller may wish to focus the same control more than once in a row (for example: to refocus the
password control after a failed login attempt), it is useful to configure the focus observable to always notify
subscribers, even if its value doesn’t change, using focus.extend({notify: “always”}).

• activate, function: Optional callback function that will be invoked if the user presses the “enter” key while using
the login controls.

See Also

• slycat-remote-controls - if you also need to prompt users for a hostname.

• slycat-remotes - for a higher-level API that provides a modal login dialog, and can manage a pool of remote
connections.

2.13.2 slycat-range-slider

The slycat-range-slider AMD module registers a Knockout component of the same name. The slycat-range-slider
component provides a standard GUI widget for selecting a closed range of values from a continuous domain.

Note: you don’t need to import the slycat-range-slider module using require() or define() - it registers the
slider component automatically at startup.

To use slycat-range-slider, create ko.observable() objects for each of the range slider parameters, including the
output range values, and bind them to the page DOM:

var page =
{

slider_length: 500,
minimum_price: ko.observable(150),
low_price: ko.observable(1000),
high_price: ko.observable(5000),
maximum_price: ko.observable(20000),

};

ko.applyBindings(page);

Then, embed the slycat-range-slider component in your markup and bind your observables to the component parame-
ters:

<p>Filter results by price:</p>
<slycat-range-slider params="
length: slider_length,

(continues on next page)

2.13. Javascript API 143

http://knockoutjs.com

slycat Documentation, Release 1.2.0

(continued from previous page)

min: minimum_price,
low: low_price,
high: high_price,
domain: maximum_price,
">

</slycat-range-slider>

Now, changes to any of the input parameters automatically update the slider, and user interaction with the slider will
update the low and high observables.

The full set of parameters supported by slycat-range-slider are as follows:

• axis, string: “vertical” or “horizontal” to create a slider with the given orientation. Default: “vertical”.

• reverse, bool: If true, the orientation of the slider is reversed so that high and low values are swapped. Default:
false.

• length, ko.observable(): Length of the slider in pixels. Default: 500 pixels.

• thumb_length, ko.observable(): Length of the slider thumb buttons in pixels. Default: 12 pixels.

• dragging, ko.observable(): Set to true while the user is dragging a thumb button.

• min, ko.observable(): Minimum allowed value. Default: 0.

• low, ko.observable(): Currently-selected range low value. Default: 0.33.

• high, ko.observable(): Currently-selected range high value. Default: 0.66.

• max, ko.observable(): Maximum allowed value. Default: 1.

2.13.3 slycat-remote-controls

The slycat-remote-controls AMD module registers a Knockout component of the same name. The slycat-remote-
controls component provides a standard GUI widget for selecting a hostname, username, and password to complete a
login.

Note: you don’t need to import the slycat-remote-controls module using require() or define() - it registers the
knockout component automatically at startup.

To use slycat-remote-controls, create ko.observable() objects for each of the login parameters, including the
hostname, username and password, and bind them to the page DOM:

var page =
{

hostname: ko.observable("localhost"),
username: ko.observable("fred"),
password: ko.observable(""),

};

ko.applyBindings(page);

Then, embed the slycat-remote-controls component in your markup and bind your observables to the component
parameters:

<p>Login to mutant cybergoat server:</p>
<slycat-remote-controls params="
hostname: hostname,
username: username,

(continues on next page)

144 Chapter 2. Documentation:

http://knockoutjs.com

slycat Documentation, Release 1.2.0

(continued from previous page)

password: password,
">

</slycat-remote-controls>

Now, changes to any of the input parameters automatically update the login controls, and user interaction with the
login controls will update the username and password observables.

The full set of parameters supported by slycat-remote-controls are as follows:

• hostname, ko.observable(): String hostname to be entered by the user. If this parameter is null or empty,
it will default to the last-used hostname.

• username, ko.observable(): String username to be entered by the user. If this parameter is null or empty,
it will default to the last-used username.

• password, ko.observable(): String password to be entered by the user.

• status, ko.observable(): Optional string status message to be displayed under the controls.

• status_type, ko.observable(): Optional string status type that controls the appearance of the status mes-
sage. Must be one of “success”, “info”, “warning”, or “danger”.

• enable, ko.observable(): Optional boolean value to enable / disable the controls.

• focus, ko.observable(): Optional, used to focus the controls. Set to “hostname” to focus the hostname
control, “username” to focus the username control, “password” to focus the password control, or true to au-
tomatically choose which control to focus. Because the caller may wish to focus the same control more than
once in a row (for example: to refocus the password control after a failed login attempt), it is useful to configure
the focus observable to always notify subscribers, even if its value doesn’t change, using focus.extend({notify:
“always”}).

• activate, function: Optional callback function that will be invoked if the user presses the “enter” key while using
the login controls.

See Also

• slycat-login-controls - if you don’t need to prompt users for a hostname.

• slycat-remotes - for a higher-level API that provides a modal login dialog, and can manage a pool of remote
connections.

2.13.4 slycat-remotes

The slycat-remotes AMD module provides a high-level API for making a remote connection to another host, when the
hostname is known in advance, and maintaining a pool of remote connections.

For example, once the module has been imported into the current namespace:

require(["slycat-remotes"], function(remotes)
{

// Use the module here
});

A remote session can be created as follows (the user will be prompted for their username and password with a modal
dialog):

2.13. Javascript API 145

slycat Documentation, Release 1.2.0

remotes.login(
{

hostname: "localhost",
success: function(sid)
{
// Do something with the remote session id

},
});

slycat-remotes.login(params)
Prompt the user for a username and password, and create a remote session:

Arguments

• params (object) – a set of key/value login parameters:

– hostname (string) - Required, remote hostname.

– title (string) - Optional title for the login dialog.

– message (string) - Optional message for the login dialog.

– success (function) - Optional, called with the remote session ID when the remote connec-
tion is made.

– cancel (function) - Optional, called if the user cancels making a connection.

The user will be prompted for their login information until they are successful, or cancel the operation.

slycat-remotes.create_pool()
Create and return an object that manages a collection of remote sessions.

Returns an instance of slycat-remote.pool that manages a collection of remote sessions, organized
by hostname.

slycat-remotes.pool.get_remote(params)
Retrieve an existing remote session ID for a given host, or prompt the user to create a new session.

Arguments

• params (object) – a set of key/value parameters:

– hostname (string) - Required remote hostname.

– title (string) - Optional title for the login dialog, if the remote session doesn’t already
exist.

– message (string) - Optional message for the login dialog, if the remote session doesn’t
already exist.

– success (function) - Optional, called with the remote session ID if it already exists, or the
user successfully creates a new session.

– cancel (function) - Optional, called if the host connection doesn’t already exist, and the
user cancels session creation.

slycat-remotes.pool.delete_remote(hostname)
Shut-down and remove the remote session (if any) for the given host.

Arguments

• hostname (string) – the host whose session should be closed. Calls with unknown
hostnames will be quietly ignored.

Note that this method could cause a harmless failed AJAX request, if the given session has already expired.

146 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

See Also

• slycat-login-controls - for a lower-level set of login controls.

• slycat-remote-controls - for a lower-level set of hostname + login controls.

2.13.5 slycat-server-root

Like any web service, the Slycat server could be deployed behind a reverse proxy, altering the URLs used
by a client to access the REST API. For example, if an organization deployed an instance of Slycat at
http://example.com/services/slycat, clients would retrieve the list of available projects at /services/slycat/projects in-
stead of the usual /projects.

To facilitate this, the slycat-server-root AMD module returns a single constant string - the server root - which must be
prepended to all URLs used by clients. For example, clients should never use hard-coded URLs:

jquery.ajax("/projects"); // NEVER DO THIS

Instead, the server root must be imported into the current namespace:

require(["slycat-server-root"], function(server_root)
{

// Use the server_root string here
});

And used to construct URLs dynamically at runtime:

jquery.ajax(server_root + "projects");

Note that clients should rarely need to construct URLs in the first place - instead, they should use the slycat-web-client
module, which provides simplified access to the REST API and uses the server root for you.

2.13.6 slycat-web-client

The slycat-web-client AMD module provides convenient Javascript bindings for the REST API, in a style similar to
jquery.ajax().

For example, once the module has been imported into the current namespace:

require(["slycat-web-client"], function(client)
{

// Use the module here
});

A model can be retrieved using:

client.get_model(
{

mid: model_id, // Unique model identifier
success: function(model)
{
// Do something with the model

},
});

2.13. Javascript API 147

slycat Documentation, Release 1.2.0

slycat-web-client.delete_model(params)
Delete an existing model.

Arguments

• params (object) – a set of key/value pairs that configure the request:

– mid (string) - required, unique model identifier.

– success (function) - optional, called when the request completes successfully.

– error (function) - optional, called if the request fails.

param request

param status

param reason_phrase

slycat-web-client.delete_project(params)
Delete an existing project.

Arguments

• params (object) – a set of key/value pairs that configure the request:

– pid (string) - required, unique project identifier.

– success (function) - optional, called when the request completes successfully.

– error (function) - optional, called if the request fails.

2.14 Python API

The Slycat server and plugins used to enhance it are implemented in Python. In addition, we provide wrappers around
the REST API for writing Python clients, typically used for custom data ingestion.

2.14.1 slycat.cca

slycat.cca.cca(X, Y, scale_inputs=True, force_positive=None, significant_digits=None)
Compute Canonical Correlation Analysis (CCA).

Parameters

• X (numpy.ndarray) – 𝑀 × 𝐼 matrix containing 𝑀 observations and 𝐼 input features.

• Y (numpy.ndarray) – 𝑀 × 𝑂 matrix containing 𝑀 observations and 𝑂 output fea-
tures.

• scale_inputs (bool, optional) – Scale input and output features to unit vari-
ance.

• force_positive (integer, optional) – If specified, flip signs in the x, y,
x_loadings, and y_loadings output values so that the values in row 𝑛 of y_loadings are
all positive.

• significant_digits (integer, optional) – Optionally specify the number
of significant digits used to compute the X and Y ranks.

Returns

148 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

• x (numpy.ndarray) – 𝑀 × 𝐶 matrix containing input metavariable values for 𝑀 obser-
vations and 𝐶 CCA components.

• y (numpy.ndarray) – 𝑀 × 𝐶 matrix containing output metavariable values for 𝑀 obser-
vations and 𝐶 CCA components.

• x_loadings (numpy.ndarray) – 𝐼×𝐶 matrix containing weights for 𝐼 input variables and
𝐶 CCA components.

• y_loadings (numpy.ndarray) – 𝑂 × 𝐶 matrix containing weights for 𝑂 output variables
and 𝐶 CCA components.

• r2 (numpy.ndarray) – length-𝐶 vector containing 𝑟2 values for 𝐶 CCA components.

• wilks (numpy.ndarray) – length-𝐶 vector containing the likelihood-ratio for 𝐶 CCA com-
ponents.

2.14.2 slycat.darray

Slycat makes extensive use of darray objects - dense, multi-dimension, multi-attribute arrays - as its fundamental unit
of storage and organization. In the abstract, a darray can be modeled as follows:

• A set of dimensions. Each dimension has a name, index type, and a half-open range of valid index values.
Currently, the only supported index type is “int64”, and indices are all zero-based (i.e. the range always begins
at zero), but these may change in the future. Collectively, the dimensions define the size and shape of the array.

• A set of attributes, each with a name and type. Allowed attribute types include a full complement of signed and
unsigned fixed-width integer types, plus floating-point and string types. Collectively, attributes define what will
be stored in the array.

• The array data. Because darrays are dense, the data will include one value per attribute, for every location in the
array.

This definition allows darrays to be flexible and efficient - for example, a “table” data structure with heterogenous
column types can be stored as a 1D darray with multiple attributes, while a “matrix” would be stored as a 2D darray
with a single floating-point attribute.

Note that darrays are an abstract concept with multiple concrete representations. This module defines an abstract
interface for manipulating Python darrays, and a concrete implementation with in-memory storage. The slycat.
hdf5 module defines functionality for manipulating darrays stored in HDF5 files on disk, and the REST API defines
functionality for working with darrays using HTTP.

Note that it is rare to manipulate entire darrays in memory at once, due to their size - most applications will work with
slices of a darray to keep memory use manageable.

class slycat.darray.MemArray(dimensions, attributes, data)
Bases: slycat.darray.Stub

darray implementation that holds the full array contents in memory.

get_data(attribute=0)
Return a data slice from one attribute.

get_statistics(attribute=0)
Return statistics describing one attribute.

set_data(attribute, slice, data)
Write a data slice to one attribute.

class slycat.darray.Prototype
Bases: object

2.14. Python API 149

slycat Documentation, Release 1.2.0

Abstract interface for all darray implementations.

attributes
Return a description of the array attributes.

dimensions
Return a description of the array dimensions.

get_data(attribute=0)
Return data from one attribute.

get_statistics(attribute=0)
Return statistics describing one attribute.

ndim
Return the number of dimensions in the array.

set_data(attribute, slice, data)
Write data to one attribute.

shape
Return the shape (size along each dimension) of the array.

size
Return the size (total number of elements) of the array.

class slycat.darray.Stub(dimensions, attributes)
Bases: slycat.darray.Prototype

darray implementation that only stores array metadata (dimensions and attributes).

attributes
Return a description of the array attributes.

dimensions
Return a description of the array dimensions.

ndim
Return the number of dimensions in the array.

shape
Return the shape (size along each dimension) of the array.

size
Return the size (total number of elements) of the array.

2.14.3 slycat.hdf5

class slycat.hdf5.ArraySet(file)
Bases: object

Wraps an instance of h5py.File to implement a Slycat arrayset.

array_count()
Note: this assumes that array indices are contiguous, which we don’t explicitly enforce.

keys()

start_array(array_index, dimensions, attributes)
Add an uninitialized darray to the arrayset.

An existing array with the same index will be overwritten.

Parameters

150 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

• array_index (integer, required.) – Zero-based index of the array to cre-
ate.

• dimensions (list of dicts, required.) – Description of the new array
dimensions.

• attributes (list of dicts, required.) – Description of the new array
attributes.

Returns array

Return type slycat.hdf5.DArray

store_array(array_index, array)
Store a slycat.darray.Prototype in the arrayset.

An existing array with the same index will be overwritten.

Parameters

• array_index (integer, required.) – The index of the array to be created /
overwritten.

• array (slycat.darray.Prototype, required.) – Existing darray to be stored.

Returns array

Return type slycat.hdf5.DArray

class slycat.hdf5.DArray(storage)
Bases: slycat.darray.Prototype

Slycat darray implementation that stores data in an HDF5 file.

attributes
Return metadata describing the darray attributes.

Returns attributes

Return type list of dicts

dimensions
Return metadata describing the darray dimensions.

Returns dimensions

Return type list of dicts

get_data(attribute)
Return a reference to the data storage for a darray attribute.

Parameters attribute (integer, optional) – The integer index of the attribute data
to retrieve.

Returns data – An object implementing a subset of the numpy.ndarray interface that
contains the attribute data. Note that the returned object only references the underlying
data - data is not retrieved from the file until you access it using the [] operator.

Return type reference to a numpy-array-like object.

get_statistics(attribute)
Return statistics describing one attribute.

get_unique(attribute, hyperslice)

ndim
Return the number of dimensions in the darray.

2.14. Python API 151

slycat Documentation, Release 1.2.0

Returns ndim – The number of dimensions in the darray.

Return type integer

set_data(attribute, hyperslice, data)
Overwrite the contents of a darray attribute.

Parameters

• attribute (integer) – The zero-based integer index of the attribute to be over-
written.

• hyperslice (integer, slice, Ellipsis, or tuple containing one or more integer,
slice, and Ellipsis instances.) – Defines the attribute region to be overwritten.

• data (numpy.ndarray) – Data to be written to the attribute.

shape
Return the darray shape (its size along each dimension).

Returns shape – The size of the darray along each dimension.

Return type tuple of integers

size
Return the darray size (total number of elements stored in the darray).

Returns size – The total number of elements stored in the darray.

Return type integer

slycat.hdf5.dtype(type)
Convert a string attribute type into a dtype suitable for use with h5py.

slycat.hdf5.path(array, directory)

slycat.hdf5.start_arrayset(file)
Create a new array set using an open hdf5 file.

Parameters file (h5py.File, required.) – An hdf5 file open for writing.

Returns arrayset

Return type slycat.hdf5.ArraySet

2.14.4 slycat.hyperchunks

Functionality for working with hyperchunk specifications (collections of array/attribute/slice information).

slycat.hyperchunks.arrays(hyperchunks, array_count)
Iterate over the arrays in a set of hyperchunks.

slycat.hyperchunks.parse(string)
Parse a string hyperchunks representation.

Parameters string (string representation of a hyperchunk.) –

Returns hyperchunks

Return type parsed representation of a hyperchunk.

slycat.hyperchunks.tostring(value)
Convert hyperchunks to their string representation.

152 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

2.14.5 slycat.table

2.14.6 slycat.timeseries

2.14.7 slycat.timeseries.segmentation

2.14.8 slycat.uri

Provides server-side functionality for creating, parsing, and editing Uniform Resource Identifiers (URIs) using an API
that is based on the excellent URI.js library (which is available for Slycat clients).

class slycat.uri.URI(value=”)
Bases: object

Encapsulates URI creation and editing with a URI.js compatible interface.

hostname(value=None)
Return / assign the URI hostname.

href(value=None)
Return / assign the string representation of a URI.

password(value=None)
Return / assign the URI password.

port(value=None)
Return / assign the URI port.

protocol(value=None)
Return / assign the URI protocol.

removeQuery(keys, value=None)
Alias for URI.removeSearch().

removeSearch(keys, value=None)
Remove values from the URI search section.

scheme()
Alias for URI.protocol()

toString()
Return the string representation of the URI.

username(value=None)
Return / assign the URI username.

valueOf()
Return the string representation of the URI.

2.14.9 slycat.web.client

class slycat.web.client.ArgumentParser(*arguments, **keywords)
Bases: argparse.ArgumentParser

Return an instance of argparse.ArgumentParser, pre-configured with arguments to connect to a Slycat server.

parse_args()

2.14. Python API 153

http://medialize.github.io/URI.js/

slycat Documentation, Release 1.2.0

class slycat.web.client.Connection(host=’http://localhost:8092’, **keywords)
Bases: object

Encapsulates a set of requests to the given host. Additional keyword arguments must be compatible with the
Python Requests library, http://docs.python-requests.org/en/latest

delete_model(mid)
Delete an existing model.

Parameters mid (string, required) – The unique model identifier.

See also:

DELETE /models/(mid)

delete_project(pid)
Delete an existing project.

Parameters pid (string, required) – The unique project identifier.

See also:

DELETE /projects/(pid)

delete_project_cache_object(pid, key)
Delete an existing project cache object.

Parameters

• pid (string, required) – The unique project identifier.

• key (string, required) – Unique cache object key.

See also:

DELETE /projects/(pid)/cache/(key)

delete_reference(rid)
Delete an existing reference.

Parameters rid (string, required) – The unique reference identifier.

See also:

DELETE /references/(rid)

delete_remote(sid)
Delete an existing remote session.

Parameters sid (string, required) – The unique remote session identifier.

See also:

DELETE /remotes/(sid)

find_or_create_project(name, description=”)
Return a project identified by name, or newly created.

Parameters

• name (string, required) – The name of the project to return (or create).

• description (string, optional) – Description to use for the new project
(if a new project is created).

Returns pid – Unique identifier of the matching (or newly created) project.

Return type string

154 Chapter 2. Documentation:

http://docs.python-requests.org/en/latest

slycat Documentation, Release 1.2.0

Raises Exception – If more than one project matches the given name.

See also:

post_projects()

find_project(name)
Return a project identified by name.

Parameters name (string, required) – The name of the project to return.

Returns project

Return type The matching project, which is an arbitrary collection of JSON-compatible data.

Raises Exception – If a project with a matching name can’t be found, or more than one
project matches the name.

See also:

find_or_create_project(), get_projects()

get_bookmark(bid)
Retrieve an existing bookmark.

Parameters bid (string, required) – The unique bookmark identifier.

Returns bookmark – The bookmark object, which is an arbitrary collection of JSON-
compatible data.

Return type object

See also:

GET /bookmarks/(bid)

get_configuration_markings()
Retrieve marking information from the server.

Returns markings

Return type server marking information.

See also:

GET /configuration/markings

get_configuration_parsers()
Retrieve parser plugin information from the server.

Returns parsers

Return type server parser plugin information.

See also:

GET /configuration/parsers

get_configuration_remote_hosts()
Retrieve remote host information from the server.

Returns parsers

Return type server remote host information.

See also:

GET /configuration/remote-hosts

2.14. Python API 155

slycat Documentation, Release 1.2.0

get_configuration_support_email()
Retrieve support email information from the server.

Returns parsers

Return type server support email information.

See also:

GET /configuration/support-email

get_configuration_version()
Retrieve version information from the server.

Returns version

Return type server version information.

See also:

GET /configuration/version

get_configuration_wizards()
Retrieve wizard plugin information from the server.

Returns version

Return type server wizard plugin information.

See also:

GET /configuration/wizards

get_global_resource(resource)

get_model(mid)
Retrieve an existing model.

Parameters mid (string, required) – The unique model identifier

Returns model – The model object, which is an arbitrary collection of JSON-compatible data.

Return type object

See also:

GET /models/(mid)

get_model_arrayset_metadata(mid, aid, arrays=None, statistics=None, unique=None)
Retrieve metadata describing an existing model arrayset artifact.

Parameters

• mid (string, required) – The unique model identifier.

• aid (string, required) – The unique artifact identifier.

• arrays (string, optional) – A set of arrays, specified using HQL.

• statistics (string, optional) – A set of attributes, specified using HQL.

• unique (string, optional) – A set of attributes, specified using HQL.

Returns metadata – The arrayset metadata, which is an arbitrary collection of JSON-
compatible data.

Return type object

156 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

See also:

GET /models/(mid)/arraysets/(aid)/metadata

get_model_file(mid, aid)

get_model_parameter(mid, aid)
Retrieve a model parameter artifact.

Model parameters are JSON objects of arbitrary complexity. They are stored directly within the model as
part of its database record, so they should be limited in size (larger data should be stored using arraysets
or files).

Parameters

• mid (string, required) – Unique model identifier.

• aid (string, required) – Unique (within the model) artifact id.

Returns parameter

Return type JSON-compatible object

See also:

PUT /models/(mid)/parameters/(aid)

get_model_resource(mtype, resource)

get_project(pid)
Retrieve an existing project.

Parameters pid (string, required) – Unique project identifier.

Returns project

Return type Arbitrary collection of JSON-compatible data.

See also:

GET /projects/(pid)

get_project_cache_object(pid, key)
Retrieve an object from a project cache.

Parameters

• pid (string, required) – Unique project identifier.

• key (string, required) – Cache object identifier.

Returns content

Return type Cached object content.

See also:

GET /projects/(pid)/cache/(key)

get_project_models(pid)
Returns every model in a project.

get_project_references(pid)
Returns every reference in a project.

get_projects()
Retrieve all projects.

Returns projects

2.14. Python API 157

slycat Documentation, Release 1.2.0

Return type List of projects. Each project is an arbitrary collection of JSON-compatible data.

See also:

GET /projects

get_remote_file(sid, path, cache=None, project=None, key=None)
Retrieve a file using a remote session.

Parameters

• sid (string, required) – Unique remote session identifier.

• path (string, required) – Remote filesystem path (must be absolute).

• cache (string, optional) – Optional server-side cache for the retrieved file.
Must be None or “project”.

• project (string, optional) – If cache is set to “project”, this must specify a
unique project identifier.

• key (string, optional) – if cache is set to “project”, this must specify a unique
key for the cached object.

Returns file

Return type Remote file contents.

See also:

GET /remotes/(sid)/file(path)

get_remote_image(sid, path, cache=None, project=None, key=None)
Retrieve an image using a remote session.

Parameters

• sid (string, required) – Unique remote session identifier.

• path (string, required) – Remote filesystem path (must be absolute).

• cache (string, optional) – Optional server-side cache for the retrieved im-
age. Must be None or “project”.

• project (string, optional) – If cache is set to “project”, this must specify a
unique project identifier.

• key (string, optional) – if cache is set to “project”, this must specify a unique
key for the cached object.

Returns image

Return type Remote image contents.

See also:

GET /remotes/(sid)/image(path)

get_user(uid=None)
Retrieve directory information about an existing user.

Parameters uid (string, optional) – Unique user identifier. If unspecified, returns
information about the user making the call.

Returns user

Return type Arbitrary collection of JSON-compatible data.

158 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

See also:

GET /users/(uid)

get_wizard_resource(wtype, resource)

join_model(mid)
Wait for a model to complete before returning.

A Slycat model goes through several distinct phases over its lifetime:

1. The model is created.

2. Input artifacts are pushed into the model.

3. The model is marked “finished”.

4. Optional one-time computation is performed on the server, storing output artifacts.

5. The model is complete and ready to be viewed.

Use this function in scripts that have performed steps 1, 2, and 3 and need to wait until step 4 completes.

Parameters mid (string, required) – Unique model identifier.

Notes

A model that hasn’t been finished will never complete - you should ensure that post_model_finish() is
called successfully before calling join_model().

See also:

post_model_finish()

post_events(path, parameters={})

post_model_files(mid, aids, files, parser, input=True, parameters={})
Stores a model file artifacts.

post_model_finish(mid)
Notify the server that a model is fully initialized.

When called, the server will perform one-time computation for the given model type.

Parameters mid (string, required) – Unique model identifier.

See also:

POST /models/(mid)/finish

post_project_bookmarks(pid, bookmark)
Store a bookmark.

Parameters

• pid (string, required) – Unique project identifier.

• bookmark (object) – Arbitrary collection of JSON-compatible data.

Returns bid – Unique bookmark identifier.

Return type string

See also:

POST /projects/(pid)/bookmarks

2.14. Python API 159

slycat Documentation, Release 1.2.0

post_project_models(pid, mtype, name, marking=”, description=”)
Creates a new model, returning the model ID.

post_project_references(pid, name, mtype=None, mid=None, bid=None)
Store a project reference.

Parameters

• pid (string, required) – Unique project identifier.

• name (string, required) – Reference name.

• mtype (string, optional) – Optional model type.

• mid (string, optional) – Optional model identifier.

• bid (string, optional) – Optional bookmark identifier.

Returns rid – Unique reference identifier.

Return type string

See also:

POST /projects/(pid)/references

post_projects(name, description=”)
Creates a new project, returning the project ID.

post_remote_browse(sid, path, file_reject=None, file_allow=None, directory_allow=None, direc-
tory_reject=None)

post_remotes(hostname, username, password, agent=None)

put_model(mid, model)

put_model_arrayset(mid, aid, input=True)
Starts a new model array set artifact, ready to receive data.

put_model_arrayset_array(mid, aid, array, dimensions, attributes)
Starts a new array set array, ready to receive data.

put_model_arrayset_data(mid, aid, hyperchunks, data, force_json=False)
Write data to an arrayset artifact on the server.

Parameters

• mid (string, required) – Unique model identifier.

• aid (string, required) – Unique (to the model) arrayset artifact id.

• hyperchunks (string, required) – Specifies where the data will be stored,
in Hyperchunks format.

• data (iterable, required)) – A collection of numpy.ndarray data chunks
to be uploaded. The number of data chunks must match the number implied by the
hyperchunks parameter.

• force_json (bool, optional)) – Force the client to upload data using JSON
instead of the binary format.

See also:

PUT /models/(mid)/arraysets/(aid)/data

put_model_inputs(source, target)

160 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

put_model_parameter(mid, aid, value, input=True)
Store a model parameter artifact.

Model parameters are JSON objects of arbitrary complexity. They are stored directly within the model as
part of its database record, so they should be limited in size (larger data should be stored using arraysets
or files).

To get the value of a parameter artifact, use get_model() and read the value directly from the model
record. An artifact id foo will be accessible in the record as model[“artifact:foo”].

Parameters

• mid (string, required) – Unique model identifier.

• aid (string, required) – Unique (within the model) artifact id.

• value (object, required) – An arbitrary collection of JSON-compatible data.

• input (boolean, optional) – Marks whether this artifact is a model input.

See also:

PUT /models/(mid)/parameters/(aid)

put_project(pid, project)
Modifies a project.

request(method, path, **keywords)
Makes a request with the given HTTP method and path, returning the body of the response. Additional
keyword arguments must be compatible with the Python Requests library, http://docs.python-requests.
org/en/latest

update_model(mid, **kwargs)
Update model state.

This function provides a more convenient alternative to put_model().

See also:

put_model()

slycat.web.client.connect(arguments, **keywords)
Factory function for client connections that takes an option parser as input.

2.14.10 slycat.web.server

slycat.web.server.check_https_get_remote_ip()
checks that the connection is https and then returns the users remote ip :return: remote ip

slycat.web.server.check_rules(groups)

slycat.web.server.check_user(session_user, apache_user, couchdb, sid, session)
check to see if the session user is equal to the apache user raise 403 and delete the session if they are not equal
:param session_user: user_name in the couchdb use session :param apache_user: user sent in the apache header
“authuser” :param couchdb: hook to couch :param sid: session id :param session: session object from couch
:return:

slycat.web.server.checkjob(sid, jid)
Submits a command to the slycat-agent to check the status of a submitted job to a cluster running SLURM.

Parameters

• sid (int) – Session identifier

2.14. Python API 161

http://docs.python-requests.org/en/latest
http://docs.python-requests.org/en/latest

slycat Documentation, Release 1.2.0

• jid (int) – Job identifier

Returns response – A dictionary with the following keys: jid, status, errors

Return type dict

slycat.web.server.clean_up_old_session()
try and delete any outdated sessions for the user if they have the cookie for it :return:no-op

slycat.web.server.create_session(hostname, username, password)
Create a cached remote session for the given host.

Parameters

• hostname (string) – Name of the remote host to connect via SSH.

• username (string) – Username for SSH authentication.

• password (string) – Password for SSH authentication

Returns sid – A unique session identifier.

Return type string

slycat.web.server.create_single_sign_on_session(remote_ip, auth_user)
WSGI/RevProxy no-login session creations. Successful authentication and access verification, create a session
and return. :return: not used

slycat.web.server.decode_username_and_password()
decode the url from the json that was passed to us :return: decoded url and password as a tuple

slycat.web.server.delete_model_parameter(database, model, aid)
Delete a model parameter in the couch database :param database: :param model: model from the couchdb
:param aid: artifact id :return: not used

slycat.web.server.evaluate(hdf5_array, expression, expression_type, expression_level=0)
Evaluate a hyperchunk expression.

slycat.web.server.get_model_file(database, model, aid)

slycat.web.server.get_model_lock(model_id)

slycat.web.server.get_model_parameter(database, model, aid)

slycat.web.server.get_password_function()

slycat.web.server.get_remote_file(sid, path)
Returns the content of a file from a remote system.

Parameters

• sid (int) – Session identifier

• path (string) – Path for the requested file

Returns content – Content of the requested file

Return type string

slycat.web.server.get_remote_file_server(client, sid, path)
Returns the content of a file from a remote system.

Parameters

• sid (int) – Session identifier

• path (string) – Path for the requested file

162 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Returns content – Content of the requested file

Return type string

slycat.web.server.mix(a, b, amount)
Linear interpolation between two numbers. Useful for computing model progress.

slycat.web.server.post_model_file(mid, input=None, sid=None, path=None, aid=None,
parser=None, client=None, **kwargs)

slycat.web.server.put_model_array(database, model, aid, array_index, attributes, dimensions)
store array for model

Parameters

• database – database of model

• model – model as an object

• aid – artifact id (eg data-table)

• array_index – index of the array

• attributes – name and type in column

• dimensions – number of data rows

Returns

slycat.web.server.put_model_arrayset(database, model, aid, input=False)
Start a new model array set artifact. :param database: the database with our model :param model: the model
:param aid: artifact id :param input: :return:

slycat.web.server.put_model_arrayset_data(database, model, aid, hyperchunks, data)
Write data to an arrayset artifact.

Parameters

• database (database object, required) –

• model (model object, required) –

• aid (string, required) – Unique (to the model) arrayset artifact id.

• hyperchunks (string or hyperchunks parse tree, required) –
Specifies where the data will be stored, in Hyperchunks format.

• data (iterable, required)) – A collection of numpy.ndarray data chunks to be
stored. The number of data chunks must match the number implied by the hyperchunks
parameter.

See also:

PUT /models/(mid)/arraysets/(aid)/data

slycat.web.server.put_model_file(database, model, aid, value, content_type, input=False)

slycat.web.server.put_model_inputs(database, model, source, deep_copy=False)

slycat.web.server.put_model_parameter(database, model, aid, value, input=False)

slycat.web.server.response_url()
get the resonse_url and clean it to make sure that we are not being spoofed :return: url to route to once signed in

slycat.web.server.ssh_connect(hostname=None, username=None, password=None)

2.14. Python API 163

slycat Documentation, Release 1.2.0

slycat.web.server.update_model(database, model, **kwargs)
Update the model, and signal any waiting threads that it’s changed. will only update model base on “state”,
“result”, “started”, “finished”, “progress”, “message”

2.14.11 slycat.web.server.authentication

slycat.web.server.authentication.is_project_administrator(project)
Return True if the current request is from a project administrator.

slycat.web.server.authentication.is_project_reader(project)
Return True if the current request is from a project reader.

slycat.web.server.authentication.is_project_writer(project)
Return True if the current request is from a project writer.

slycat.web.server.authentication.is_server_administrator()
Return True if the current request is from a server administrator.

slycat.web.server.authentication.project_acl(project)
Extract ACL information from a project.

slycat.web.server.authentication.require_project_administrator(project)
Raise an exception if the current request doesn’t have project administrator privileges.

slycat.web.server.authentication.require_project_reader(project)
Raise an exception if the current request doesn’t have project read privileges.

slycat.web.server.authentication.require_project_writer(project)
Raise an exception if the current request doesn’t have project write privileges.

slycat.web.server.authentication.require_server_administrator()
Raise an exception if the current request doesn’t have server administrator privileges.

slycat.web.server.authentication.test_project_administrator(project)
Return True if the current request has project administrator privileges.

slycat.web.server.authentication.test_project_reader(project)
Return True if the current request has project read privileges.

slycat.web.server.authentication.test_project_writer(project)
Return True if the current request has project write privileges.

slycat.web.server.authentication.test_server_administrator()
Return True if the current request has server administrator privileges.

2.14.12 slycat.web.server.database.couchdb

Slycat uses CouchDB as its primary storage for projects, models, bookmarks, metadata, and small model artifacts. For
large model artifacts such as darrays, the CouchDB database stores links to HDF5 files stored on disk.

class slycat.web.server.database.couchdb.Database(database)
Wraps a couchdb.client.Database to convert CouchDB exceptions into CherryPy exceptions.

changes(*arguments, **keywords)

delete(*arguments, **keywords)

get(type, id)

get_attachment(*arguments, **keywords)

164 Chapter 2. Documentation:

http://couchdb.apache.org

slycat Documentation, Release 1.2.0

put_attachment(*arguments, **keywords)

save(*arguments, **keywords)

scan(path, **keywords)

view(*arguments, **keywords)

write_file(document, content, content_type)

slycat.web.server.database.couchdb.connect()
Connect to a CouchDB database.

Returns database

Return type slycat.web.server.database.couchdb.Database

2.14.13 slycat.web.server.engine

class slycat.web.server.engine.SessionIdFilter
Bases: logging.Filter

Python log filter to keep session ids out of logfiles.

filter(record)
Determine if the specified record is to be logged.

Is the specified record to be logged? Returns 0 for no, nonzero for yes. If deemed appropriate, the record
may be modified in-place.

slycat.web.server.engine.start(root_path, config_file)

2.14.14 slycat.web.server.handlers

slycat.web.server.handlers.css_bundle()

slycat.web.server.handlers.delete_job(hostname, jid)

slycat.web.server.handlers.delete_model(mid)

slycat.web.server.handlers.delete_model_parameter(mid, aid)
delete a model artifact :param mid: model Id :param aid: artifact id :return:

slycat.web.server.handlers.delete_project(pid)

slycat.web.server.handlers.delete_project_cache(pid)
clears all the cached images and videos for a project given a project ID :param pid: Project ID :return: status

slycat.web.server.handlers.delete_project_cache_object(pid, key)

slycat.web.server.handlers.delete_reference(rid)

slycat.web.server.handlers.delete_remote(sid)

slycat.web.server.handlers.delete_upload(uid)
cleans up an upload session throws 409 if the session is busy :param uid: :return: not used

slycat.web.server.handlers.get_bookmark(bid)

slycat.web.server.handlers.get_checkjob(hostname, jid)

slycat.web.server.handlers.get_configuration_ga_tracking_id()

slycat.web.server.handlers.get_configuration_injected_code()

2.14. Python API 165

slycat Documentation, Release 1.2.0

slycat.web.server.handlers.get_configuration_markings()

slycat.web.server.handlers.get_configuration_parsers()

slycat.web.server.handlers.get_configuration_remote_hosts()

slycat.web.server.handlers.get_configuration_support_email()

slycat.web.server.handlers.get_configuration_version()

slycat.web.server.handlers.get_configuration_wizards()

slycat.web.server.handlers.get_global_resource(resource)

slycat.web.server.handlers.get_job_output(hostname, jid, path)

slycat.web.server.handlers.get_model(mid, **kwargs)

slycat.web.server.handlers.get_model_array_attribute_chunk(mid, aid, array, at-
tribute, **arguments)

slycat.web.server.handlers.get_model_arrayset_data(mid, aid, hyperchunks, byte-
order=None)

slycat.web.server.handlers.get_model_arrayset_metadata(mid, aid, **kwargs)

slycat.web.server.handlers.get_model_file(mid, aid)

slycat.web.server.handlers.get_model_parameter(mid, aid)

slycat.web.server.handlers.get_model_statistics(mid)
returns statistics on the model :param mid: model ID :return json: {

“mid”:mid, “hdf5_file_size”:hdf5_file_size, “total_server_data_size”: to-
tal_server_data_size, “hdf5_store_size”:total_hdf5_server_size, “model”:model,
“delta_creation_time”:delta_creation_time, “couchdb_doc_size”: sys.getsizeof(model)

}

slycat.web.server.handlers.get_model_table_chunk(mid, aid, array, rows=None,
columns=None, index=None,
sort=None)

slycat.web.server.handlers.get_model_table_metadata(mid, aid, array, index=None)

slycat.web.server.handlers.get_model_table_sorted_indices(mid, aid, array,
rows=None, in-
dex=None, sort=None,
byteorder=None)

slycat.web.server.handlers.get_model_table_unsorted_indices(mid, aid, ar-
ray, rows=None,
index=None,
sort=None, byte-
order=None)

slycat.web.server.handlers.get_page(ptype)

slycat.web.server.handlers.get_page_resource(ptype, resource)

slycat.web.server.handlers.get_project(pid)
returns a project based on “content-type” header :param pid: project ID :return: Either html landing page of
given project or the json representation of the project

slycat.web.server.handlers.get_project_cache_object(pid, key)

slycat.web.server.handlers.get_project_models(pid)

166 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

slycat.web.server.handlers.get_project_references(pid)

slycat.web.server.handlers.get_projects(_=None)
returns either and array of projects or html for displaying the projects :param _: :return:

slycat.web.server.handlers.get_projects_list(_=None)
returns either and array of projects or html for displaying the projects :param _: :return:

slycat.web.server.handlers.get_remote_file(hostname, path, **kwargs)
Given a hostname and file path returns the file given by the path :param hostname: connection host name :param
path: path to file :param kwargs: :return: file

slycat.web.server.handlers.get_remote_host_dict()

slycat.web.server.handlers.get_remote_image(hostname, path, **kwargs)
Given a hostname and image path returns the image given by the path :param hostname: connection host name
:param path: path to image :param kwargs: :return: image

slycat.web.server.handlers.get_remote_job_status(hostname, jid)

slycat.web.server.handlers.get_remote_show_user_password()
checks to see if the application needs to show password :return: json {show:bool, msg:msg}

slycat.web.server.handlers.get_remote_video(hostname, vsid)
Given a hostname and vsid returns the video given by the vsid :param hostname: connection host name :param
vsid: video uuid :return: video

slycat.web.server.handlers.get_remote_video_status(hostname, vsid)
Given a hostname and vsid returns the video status given by the vsid :param hostname: connection host name
:param vsid: video uuid :return: json

slycat.web.server.handlers.get_remotes(hostname)
Returns {status: True} if the hostname was found in the user’s session :param hostname: connection host name
:return: {“status”:status, “msg”:msg}

slycat.web.server.handlers.get_root()
Redirect all requests to “/” to “/projects” Not sure why we used to do that, but after conversion to webpack this
is no longer needed, so I changed the projects-redirect config parameter in web-server-config.ini to just “/”

slycat.web.server.handlers.get_session_status(hostname)

slycat.web.server.handlers.get_sid(hostname)
Takes a hostname address and returns the established sid value base on what is found in the users session raises
400 and 404 :param hostname: name of the host we are trying to connect to :return: sid : uuid for the session
name

slycat.web.server.handlers.get_table_metadata(file, array_index, index)
Return table-oriented metadata for a 1D array, plus an optional index column.

slycat.web.server.handlers.get_table_sort_index(file, metadata, array_index, sort, in-
dex)

slycat.web.server.handlers.get_time_series_names(hostname, path, **kwargs)
Parse a time series csv for all column names :param hostname: connection host name :param path: path to csv
file :param kwargs: :return: json object of column names

slycat.web.server.handlers.get_user(uid)

slycat.web.server.handlers.get_user_config(hostname)

slycat.web.server.handlers.get_wizard_resource(wtype, resource)

slycat.web.server.handlers.job_time(nodes, tasks, size)
gives the time in seconds recommended given job meta data :param nodes: number of hpc nodes for job :param

2.14. Python API 167

slycat Documentation, Release 1.2.0

tasks: number of tasks per node for job :param size: size of data file used in the job :return: json time in seconds
as an integer {‘time-seconds’: 1800}

slycat.web.server.handlers.js_bundle()

slycat.web.server.handlers.login()
Takes the post object under cherrypy.request.json with the users name and password and determins with the user
can be authenticated with slycat :return: authentication status

slycat.web.server.handlers.logout()
See if the client has a valid session. If so delete it :return: the status of the request

slycat.web.server.handlers.model_command(mid, type, command, **kwargs)

slycat.web.server.handlers.model_sensitive_command(mid, type, command)

slycat.web.server.handlers.open_id_authenticate(**params)
takes the openid parameter sent to this function and logs in a user :param params: openid params as a dictionary
:return: not used

slycat.web.server.handlers.post_events(event)

slycat.web.server.handlers.post_log()
send post json {“message”:”message”} to log client errors onto the client server :return:

slycat.web.server.handlers.post_model_arrayset_data(mid, aid)
get the arrayset data based on aid, mid, byteorder, and hyperchunks

requires hyperchunks to be included in the json payload

Parameters

• mid – model id

• aid – artifact id

Returns stream of data

slycat.web.server.handlers.post_model_files(mid, input=None, files=None, sids=None,
paths=None, aids=None, parser=None,
**kwargs)

slycat.web.server.handlers.post_model_finish(mid)

slycat.web.server.handlers.post_project_bookmarks(pid)

slycat.web.server.handlers.post_project_models(pid)
When a pid along with json “model-type”, “marking”, “name” is sent with POST creates a model and saves it
to the database :param pid: project ID for created model :return: json {“id” : mid}

slycat.web.server.handlers.post_project_references(pid)

slycat.web.server.handlers.post_projects()

slycat.web.server.handlers.post_remote_browse(hostname, path)

slycat.web.server.handlers.post_remote_command(hostname)
run a remote command from the list of pre-registered commands that are located on a remote agent. :param
hostname: name of the hpc host :return: {

“message”: a message that is supplied by the agent, “command”: an echo of the command that
was sent to the server and the agent, “error”: boolean describing if there was an agent error, “avail-
able_scripts”: [{

“name”: script_name, “description”: script_description, “parameters”: [{

168 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

“name”: parameter_name as string, “description”: description of the param
string, “example”:example usage string, “type”: field type eg string, int. . .

}]

}]list of available scripts from the agent

}

slycat.web.server.handlers.post_remote_launch(hostname)

slycat.web.server.handlers.post_remotes()
Given username, hostname, password as a json payload establishes a session with the remote host and attaches
it to the users session :return: {“sid”:sid, “status”:boolean, msg:”“}

slycat.web.server.handlers.post_submit_batch(hostname)

slycat.web.server.handlers.post_upload_finished(uid)
ask the server to finish the upload :param uid: upload session ID :return: status of upload

slycat.web.server.handlers.post_uploads()
creates a session for uploading a file to :return: Upload ID

slycat.web.server.handlers.put_model(mid)

slycat.web.server.handlers.put_model_arrayset(mid, aid)

slycat.web.server.handlers.put_model_arrayset_array(mid, aid, array)

slycat.web.server.handlers.put_model_arrayset_data(mid, aid, hyperchunks, data, byte-
order=None)

slycat.web.server.handlers.put_model_inputs(mid)

slycat.web.server.handlers.put_model_parameter(mid, aid)

slycat.web.server.handlers.put_project(pid)

slycat.web.server.handlers.put_reference(rid)

slycat.web.server.handlers.put_upload_file_part(uid, fid, pid, file=None, host-
name=None, path=None)

slycat.web.server.handlers.require_array_json_parameter(name)

slycat.web.server.handlers.require_boolean_json_parameter(name)

slycat.web.server.handlers.require_integer_array_json_parameter(name)

slycat.web.server.handlers.require_integer_parameter(value, name)

slycat.web.server.handlers.require_json_parameter(name)
checks to see if the parameter is in the cherrypy.request.json and errors gracefully if it is not there :param name:
name of json param :return: value of the json param

slycat.web.server.handlers.run_agent_function(hostname)

slycat.web.server.handlers.set_user_config(hostname)

slycat.web.server.handlers.tests_request(*arguments, **keywords)

slycat.web.server.handlers.validate_table_byteorder(byteorder)

slycat.web.server.handlers.validate_table_columns(columns)

slycat.web.server.handlers.validate_table_rows(rows)

slycat.web.server.handlers.validate_table_sort(sort)

2.14. Python API 169

slycat Documentation, Release 1.2.0

2.14.15 slycat.web.server.hdf5

slycat.web.server.hdf5.create(array)
Create a new array in the data store, ready for writing.

slycat.web.server.hdf5.delete(array)
Remove an array from the data store.

class slycat.web.server.hdf5.null_lock
Bases: object

Do-nothing replacement for a thread lock, useful for debugging threading problems with h5py.

slycat.web.server.hdf5.open(array, mode=’r’)
Open an array from the data store for reading.

slycat.web.server.hdf5.path(array)
Convert an array identifier to a data store filesystem path.

2.14.16 slycat.web.server.plugin

class slycat.web.server.plugin.Manager
Bases: object

Manages server plugin modules.

load(plugin_path)
Load plugin modules from a filesystem.

If the the given path is a directory, loads all .py files in the directory (non-recursive). Otherwise, assumes
the path is a module and loads it.

register_directory(type, init, user)
Register a new directory type.

Parameters

• type (string, required) – A unique identifier for the new directory type.

• init (callable, required) – Called with parameters specified by an admin-
strator in the server config.ini to initialize the directory.

• user (callable, required) – Called with a username to retrieve information
about a user. Must return a dictionary containing user metadata.

register_marking(type, label, badge, page_before=None, page_after=None)
Register a new marking type.

Parameters

• type (string, required) – A unique identifier for the new marking type.

• label (string, required) – Human-readable string used to represent the
marking in the user interface.

• badge (string, required) – HTML representation used to display the mark-
ing as a “badge”. The HTML must contain everything needed to properly format the
marking, including inline CSS styles.

• page_before (string, optional) – HTML representation used to display
the marking at the top of an HTML page. If left unspecified, the badge representation
will be used instead.

170 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

• page_after (string, optional) – HTML representation used to display the
marking at the bottom of an HTML page. If left unspecified, the badge representation
will be used instead.

• that the page_before and page_after markup need not be
self-contained, i.e. they (Note) –

• be used together to define a "container" that encloses
the page markup. (may) –

register_model(type, finish, ptype=None)
Register a new model type.

Parameters

• type (string, required) – A unique identifier for the new model type.

• finish (callable, required) – Called to finish (perform computation on) a
new instance of the model.

• ptype (string, optional) – A unique page type identifier to be used as the
default interface when viewing the model. Defaults to the same string as the model
type.

register_model_command(verb, type, command, handler)
Register a custom request handler.

Parameters

• verb (string, required) – The HTTP verb for the command, “GET”,
“POST”, or “PUT”.

• type (string, required) – Unique category for the command. Typically, this
would be a model, parser, or wizard type.

• command (string, required) – Unique command name.

• handler (callable, required) – Called with the database, model, verb, type,
command, and optional keyword parameters to handle a matching client request.

register_page(type, html)
Register a new page type.

Parameters

• type (string, required) – A unique identifier for the new page type.

• html (callable, required) – Called to generate an HTML representation of
the page.

register_page_bundle(type, content_type, paths)

register_page_resource(type, resource, path)
Register a custom resource associated with a page type.

Parameters

• type (string, required) – Unique identifier of an already-registered page
type.

• resource (string, required) – Server endpoint to retrieve the resource.

• path (string, required) – Absolute filesystem path of the resource to be re-
trieved. The resource may be a single file, or a directory.

2.14. Python API 171

slycat Documentation, Release 1.2.0

register_parser(type, label, categories, parse)
Register a new parser type.

Parameters

• type (string, required) – A unique identifier for the new parser type.

• label (string, required) – Human readable label describing the parser.

• categories (list, required) – List of string categories describing the type
of data this parser produces, for example “table”.

• parse (callable, required) – Called with a database, model, input flag, list
of file objects, list of artifact names, and optional keyword arguments. Must parse
the file and insert its data into the model as artifacts, returning True if successful,
otherwise False.

register_password_check(type, check)
Register a new password check function.

Parameters

• type (string, required) – A unique identifier for the new check type.

• check (callable, required) – Called with a realm, username, and password
plus optional keyword arguments. Must return a (success, groups) tuple, where suc-
cess is True if authentication succeeded, and groups is a (possibly empty) list of
groups to which the user belongs.

register_plugins()
Called to register plugins after all plugin modules have been loaded.

register_tool(name, hook_point, callable)
Register a new cherrypy tool.

Parameters

• name (string, required) – A unique identifier for the new tool.

• hook_point (string, required) – CherryPy hook point where the tool will
be installed.

• callable (callable object, required) – Called for every client request.

register_wizard(type, label, require)
Register a wizard for creating new entities.

Parameters

• type (string, required) – A unique identifier for the wizard.

• label (string, required) – Human-readable name for the wizard, displayed
in the UI.

• require (dict, required) – Requirements in order to use the wizard. Sup-
ported requirements include:

– ”action”: “create” - the wizard will be used to create new objects.

– ”action”: “edit” - the wizard will be used to edit existing objects.

– ”action”: “delete” - the wizard will be used to delete existing objects.

– ”context”: “global” - the wizard does not require any resources to run.

– ”context”: “project” - the wizard requires a project to run.

172 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

– ”context”: “model” - the wizard requires a model to run.

– ”model-type”:[list of model types] - a model matching one of the given types is
required to run the wizard.

register_wizard_resource(type, resource, path)
Register a custom resource associated with a wizard.

Parameters

• type (string, required) – Unique identifier of an already-registered wizard.

• resource (string, required) – Server endpoint to retrieve the resource.

• path (string, required) – Absolute filesystem path of the resource to be re-
trieved.

2.14.17 slycat.web.server.remote

Functions for managing cached remote ssh sessions.

Slycat makes extensive use of ssh and the Slycat Agent to access remote resources located on the high performance
computing platforms used to generate ensembles. This module provides functionality to create cached remote ssh /
agent sessions that can be used to retrieve data from remote hosts. This functionality is used in a variety of ways:

• Web clients can browse the filesystem of a remote host.

• Web clients can create a Slycat model using data stored on a remote host.

• Web clients can retrieve images on a remote host (an essential part of the Parameter Image Model).

• Web clients can retrieve video compressed from still images on a remote host.

When a remote session is created, a connection to the remote host over ssh is created, an agent is started (only if the
required configuration is present), and a unique session identifier is returned. Callers use the session id to retrieve the
cached session and communicate with the remote host / agent. A “last access” time for each session is maintained and
updated whenever the cached session is accessed. If a session times-out (a threshold amount of time has elapsed since
the last access) it is automatically deleted, and subsequent use of the expired session id will fail.

Each session is bound to the IP address of the client that created it - only the same client IP address is allowed to access
the session.

class slycat.web.server.remote.Session(client, username, hostname, ssh, sftp, agent=None)
Bases: object

Encapsulates an open session connected to a remote host.

Examples

Calling threads must serialize access to the Session object. To facilitate this, a Session is a context manager -
callers should always use a with statement when accessing a session:

>>> with slycat.web.server.remote.get_session(sid) as session:
... print session.username

accessed
Return the time the session was last accessed.

browse(path, file_reject, file_allow, directory_reject, directory_allow)

2.14. Python API 173

slycat Documentation, Release 1.2.0

cancel_job(jid)
Submits a command to the slycat-agent to cancel a running job on a cluster running SLURM.

Parameters jid (int) – Job ID

Returns response – A dictionary with the following keys: jid, output, errors

Return type dict

checkjob(jid)
Submits a command to the slycat-agent to check the status of a submitted job to a cluster running SLURM.

Parameters jid (int) – Job ID

Returns response – A dictionary with the following keys: jid, status, errors

Return type dict

client
Return the IP address of the client that created the session.

close()

get_file(path, **kwargs)

get_image(path, **kwargs)

get_job_output(jid, path)
Submits a command to the slycat-agent to fetch the content of the a job’s output file from a cluster running
SLURM.

Note that the expected format for the output file is slurm-[jid].out.

Parameters jid (int) – Job ID

Returns response – A dictionary with the following keys: jid, output, errors

Return type dict

get_remote_job_status(jid)
check of the status of a job running on an agent with a hostanemd session :param jid: job id :return:

get_user_config()
Submits a command to the slycat-agent to fetch the content of a user’s .slycatrc file in their home directory.

Returns response – A dictionary with the configuration values

Return type dict

get_video(vsid)

get_video_status(vsid)

hostname
Return the remote hostname accessed by the session.

launch(command)
Submits a single command to a remote location via the slycat-agent or SSH.

Parameters command (string) – Command

Returns response – A dictionary with the following keys: command, output, errors

Return type dict

run_agent_function(wckey, nnodes, partition, ntasks_per_node, time_hours, time_minutes,
time_seconds, fn, fn_params, uid)

Submits a command to the slycat-agent to run a predefined function on a cluster running SLURM.

174 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Parameters

• wckey (string) – Workload characterization key

• nnodes (int) – Number of nodes requested for the job

• partition (string) – Name of the partition where the job will be run

• ntasks_per_node (int) – Number of tasks to run on a node

• ntasks (int) – Number of tasks allocated for the job

• ncpu_per_task (int) – Number of CPUs per task requested for the job

• time_hours (int) – Number of hours requested for the job

• time_minutes (int) – Number of minutes requested for the job

• time_seconds (int) – Number of seconds requested for the job

• fn (string) – Name for the Slycat agent function

• fn_params (dict) – Additional params for the agent function

Returns response – A dictionary with the following keys: jid, errors

Return type dict

run_remote_command(command)
run a remote command from an HPC source running a slycat agent. the command could be things such
as starting an hpc script or batch job or something as simple as moving files. the only requirement is that
the script is in our list of trusted scripts.

this_func()->calls agent_command_func()->which runs_shell_command() -> which launches_script()->
sends_response_to_agent()->sends_response_to_server() ->sends_status_response_to_client()

Parameters

• self –

• command – json form of a command to be run

{ “scripts”: //pre defined scripts that are registerd with the server [{

“script_name”:”script_name”, // key for the script lookup “parameters”: [{key:value},. . .]
// params that are fed to the script

},. . .] “hpc”: // these are the hpc commands that may be add for thing such as slurm {

“is_hpc_job”:bol, // determins if this should be run as an hpc job “parame-
ters”:[{key:value},. . .] // things such as number of nodes

}

} :return: {“msg”:”message from the agent”, “error”: boolean}

set_user_config(config)
Submits a command to the slycat-agent to set the content of a user’s .slycatrc file in their home directory.

Returns response

Return type dict

sftp

submit_batch(filename)
Submits a command to the slycat-agent to start an input batch file on a cluster running SLURM.

2.14. Python API 175

slycat Documentation, Release 1.2.0

Parameters filename (string) – Name of the batch file

Returns response – A dictionary with the following keys: filename, jid, errors

Return type dict

username
Return the username used to create the session.

slycat.web.server.remote.cache_object(pid, key, content_type, content)

slycat.web.server.remote.check_session(sid)
Return a true if session is active

If the session has timed-out or doesn’t exist, returns false

Parameters sid (string) – Unique session identifier returned by slycat.web.server.
remote.create_session().

Returns

Return type boolean

slycat.web.server.remote.create_session(hostname, username, password, agent)
Create a cached remote session for the given host.

Parameters

• hostname (string) – Name of the remote host to connect via ssh.

• username (string) – Username for ssh authentication.

• password (string) – Password for ssh authentication.

• agent (bool) – Used to require / prevent agent startup.

Returns sid – A unique session identifier.

Return type string

slycat.web.server.remote.delete_session(sid)
Delete a cached remote session.

Parameters sid (string, required) – Unique session identifier returned by slycat.
web.server.remote.create_session().

slycat.web.server.remote.get_session(sid)
Return a cached remote session.

If the session has timed-out or doesn’t exist, raises a 404 exception.

Parameters sid (string) – Unique session identifier returned by slycat.web.server.
remote.create_session().

Returns session – Session object that encapsulates the connection to a remote host.

Return type slycat.web.server.remote.Session

slycat.web.server.remote.get_session_server(client, sid)
Return a cached remote session.

If the session has timed-out or doesn’t exist, raises a 404 exception.

Parameters sid (string) – Unique session identifier returned by slycat.web.server.
remote.create_session().

Returns session – Session object that encapsulates the connection to a remote host. :param client:

176 Chapter 2. Documentation:

slycat Documentation, Release 1.2.0

Return type slycat.web.server.remote.Session

2.14.18 slycat.web.server.template

slycat.web.server.template.render(path, context)
Render an HTML template using Mustache syntax.

2.15 Support

For Slycat questions, comments, or suggestions, get in touch with the team at:

• https://gitter.im/sandialabs/slycat

Visit our GitHub repository for access to source code, issue tracker, and the wiki:

• http://github.com/sandialabs/slycat

2.15. Support 177

http://mustache.github.io
https://gitter.im/sandialabs/slycat
http://github.com/sandialabs/slycat

slycat Documentation, Release 1.2.0

178 Chapter 2. Documentation:

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

179

slycat Documentation, Release 1.2.0

180 Chapter 3. Indices and tables

HTTP Routing Table

/
GET /, 97

/bookmarks
GET /bookmarks/(bid), 97

/events
POST /events/(event), 121

/login
POST /login, 122

/logout
DELETE /logout, 93

/models
GET /models/(mid), 108
GET /models/(mid)/arraysets/(aid)/data,

116
GET /models/(mid)/arraysets/(aid)/metadata,

99
GET /models/(mid)/commands/(type)/(command),

102
GET /models/(mid)/files/(aid), 102
GET /models/(mid)/parameters/(aid), 103
GET /models/(mid)/tables/(aid)/arrays/(array)/chunk,

104
GET /models/(mid)/tables/(aid)/arrays/(array)/metadata,

106
GET /models/(mid)/tables/(aid)/arrays/(array)/sorted-indices,

107
GET /models/(mid)/tables/(aid)/arrays/(array)/unsorted-indices,

107
POST /models/(mid)/commands/(type)/(command),

124
POST /models/(mid)/files, ??
POST /models/(mid)/finish, 124
PUT /models/(mid), 140
PUT /models/(mid)/arraysets/(aid), 137

PUT /models/(mid)/arraysets/(aid)/arrays/(array),
134

PUT /models/(mid)/arraysets/(aid)/data,
135

PUT /models/(mid)/commands/(type)/(command),
138

PUT /models/(mid)/inputs, 139
PUT /models/(mid)/parameters/(aid), 139
DELETE /models/(mid), 94

/projects
GET /projects, 111
GET /projects/(pid), 110
GET /projects/(pid)/cache/(key), 109
GET /projects/(pid)/models, 110
POST /projects, 127
POST /projects/(pid)/bookmarks, 125
POST /projects/(pid)/models, 126
PUT /projects/(pid), 140
DELETE /projects/(pid), 94
DELETE /projects/(pid)/cache/(key), 95

/remotes
GET /remotes/(sid)/file(path), 112
GET /remotes/(sid)/image(path), 113
GET /remotes/(sid)/videos/(vsid), 115
GET /remotes/(sid)/videos/(vsid)/status,

114
POST /remotes, 130
POST /remotes/(sid)/browse(path), 128
POST /remotes/cancel-job, 119
POST /remotes/checkjob, 120
POST /remotes/get-job-output, 121
POST /remotes/launch, 129
POST /remotes/run-agent-function, 117
POST /remotes/submit-batch, 132
DELETE /remotes/(sid), 96

/resources
GET /resources/models/(mtype)/(resource),

181

slycat Documentation, Release 1.2.0

103

/uploads
POST /uploads, 133
POST /uploads/(uid)/finished, 134
PUT /uploads/(uid)/files/(fid)/parts/(pid),

141
DELETE /uploads/(uid), 96

/users
GET /users/(uid), 116

182 HTTP Routing Table

Python Module Index

s
slycat.cca, 148
slycat.darray, 149
slycat.hdf5, 150
slycat.hyperchunks, 152
slycat.uri, 153
slycat.web.client, 153
slycat.web.server, 161
slycat.web.server.authentication, 164
slycat.web.server.database.couchdb, 164
slycat.web.server.engine, 165
slycat.web.server.handlers, 165
slycat.web.server.hdf5, 170
slycat.web.server.plugin, 170
slycat.web.server.remote, 173
slycat.web.server.template, 177

183

slycat Documentation, Release 1.2.0

184 Python Module Index

Index

A
accessed (slycat.web.server.remote.Session attribute),

173
ArgumentParser (class in slycat.web.client), 153
array_count() (slycat.hdf5.ArraySet method), 150
arrays() (in module slycat.hyperchunks), 152
ArraySet (class in slycat.hdf5), 150
attributes (slycat.darray.Prototype attribute), 150
attributes (slycat.darray.Stub attribute), 150
attributes (slycat.hdf5.DArray attribute), 151

B
browse() (slycat.web.server.remote.Session method),

173

C
cache_object() (in module sly-

cat.web.server.remote), 176
cancel_job() (slycat.web.server.remote.Session

method), 173
cca() (in module slycat.cca), 148
changes() (slycat.web.server.database.couchdb.Database

method), 164
check_https_get_remote_ip() (in module sly-

cat.web.server), 161
check_rules() (in module slycat.web.server), 161
check_session() (in module sly-

cat.web.server.remote), 176
check_user() (in module slycat.web.server), 161
checkjob() (in module slycat.web.server), 161
checkjob() (slycat.web.server.remote.Session

method), 174
clean_up_old_session() (in module sly-

cat.web.server), 162
client (slycat.web.server.remote.Session attribute),

174
close() (slycat.web.server.remote.Session method),

174
connect() (in module slycat.web.client), 161

connect() (in module sly-
cat.web.server.database.couchdb), 165

Connection (class in slycat.web.client), 153
create() (in module slycat.web.server.hdf5), 170
create_session() (in module slycat.web.server),

162
create_session() (in module sly-

cat.web.server.remote), 176
create_single_sign_on_session() (in mod-

ule slycat.web.server), 162
css_bundle() (in module slycat.web.server.handlers),

165

D
DArray (class in slycat.hdf5), 151
Database (class in sly-

cat.web.server.database.couchdb), 164
decode_username_and_password() (in module

slycat.web.server), 162
delete() (in module slycat.web.server.hdf5), 170
delete() (slycat.web.server.database.couchdb.Database

method), 164
delete_job() (in module slycat.web.server.handlers),

165
delete_model() (in module sly-

cat.web.server.handlers), 165
delete_model() (slycat.web.client.Connection

method), 154
delete_model_parameter() (in module sly-

cat.web.server), 162
delete_model_parameter() (in module sly-

cat.web.server.handlers), 165
delete_project() (in module sly-

cat.web.server.handlers), 165
delete_project() (slycat.web.client.Connection

method), 154
delete_project_cache() (in module sly-

cat.web.server.handlers), 165
delete_project_cache_object() (in module

slycat.web.server.handlers), 165

185

slycat Documentation, Release 1.2.0

delete_project_cache_object() (sly-
cat.web.client.Connection method), 154

delete_reference() (in module sly-
cat.web.server.handlers), 165

delete_reference() (slycat.web.client.Connection
method), 154

delete_remote() (in module sly-
cat.web.server.handlers), 165

delete_remote() (slycat.web.client.Connection
method), 154

delete_session() (in module sly-
cat.web.server.remote), 176

delete_upload() (in module sly-
cat.web.server.handlers), 165

dimensions (slycat.darray.Prototype attribute), 150
dimensions (slycat.darray.Stub attribute), 150
dimensions (slycat.hdf5.DArray attribute), 151
dtype() (in module slycat.hdf5), 152

E
evaluate() (in module slycat.web.server), 162

F
filter() (slycat.web.server.engine.SessionIdFilter

method), 165
find_or_create_project() (sly-

cat.web.client.Connection method), 154
find_project() (slycat.web.client.Connection

method), 155

G
get() (slycat.web.server.database.couchdb.Database

method), 164
get_attachment() (sly-

cat.web.server.database.couchdb.Database
method), 164

get_bookmark() (in module sly-
cat.web.server.handlers), 165

get_bookmark() (slycat.web.client.Connection
method), 155

get_checkjob() (in module sly-
cat.web.server.handlers), 165

get_configuration_ga_tracking_id() (in
module slycat.web.server.handlers), 165

get_configuration_injected_code() (in
module slycat.web.server.handlers), 165

get_configuration_markings() (in module sly-
cat.web.server.handlers), 165

get_configuration_markings() (sly-
cat.web.client.Connection method), 155

get_configuration_parsers() (in module sly-
cat.web.server.handlers), 166

get_configuration_parsers() (sly-
cat.web.client.Connection method), 155

get_configuration_remote_hosts() (in mod-
ule slycat.web.server.handlers), 166

get_configuration_remote_hosts() (sly-
cat.web.client.Connection method), 155

get_configuration_support_email() (in
module slycat.web.server.handlers), 166

get_configuration_support_email() (sly-
cat.web.client.Connection method), 155

get_configuration_version() (in module sly-
cat.web.server.handlers), 166

get_configuration_version() (sly-
cat.web.client.Connection method), 156

get_configuration_wizards() (in module sly-
cat.web.server.handlers), 166

get_configuration_wizards() (sly-
cat.web.client.Connection method), 156

get_data() (slycat.darray.MemArray method), 149
get_data() (slycat.darray.Prototype method), 150
get_data() (slycat.hdf5.DArray method), 151
get_file() (slycat.web.server.remote.Session

method), 174
get_global_resource() (in module sly-

cat.web.server.handlers), 166
get_global_resource() (sly-

cat.web.client.Connection method), 156
get_image() (slycat.web.server.remote.Session

method), 174
get_job_output() (in module sly-

cat.web.server.handlers), 166
get_job_output() (sly-

cat.web.server.remote.Session method), 174
get_model() (in module slycat.web.server.handlers),

166
get_model() (slycat.web.client.Connection method),

156
get_model_array_attribute_chunk() (in

module slycat.web.server.handlers), 166
get_model_arrayset_data() (in module sly-

cat.web.server.handlers), 166
get_model_arrayset_metadata() (in module

slycat.web.server.handlers), 166
get_model_arrayset_metadata() (sly-

cat.web.client.Connection method), 156
get_model_file() (in module slycat.web.server),

162
get_model_file() (in module sly-

cat.web.server.handlers), 166
get_model_file() (slycat.web.client.Connection

method), 157
get_model_lock() (in module slycat.web.server),

162
get_model_parameter() (in module sly-

cat.web.server), 162
get_model_parameter() (in module sly-

186 Index

slycat Documentation, Release 1.2.0

cat.web.server.handlers), 166
get_model_parameter() (sly-

cat.web.client.Connection method), 157
get_model_resource() (sly-

cat.web.client.Connection method), 157
get_model_statistics() (in module sly-

cat.web.server.handlers), 166
get_model_table_chunk() (in module sly-

cat.web.server.handlers), 166
get_model_table_metadata() (in module sly-

cat.web.server.handlers), 166
get_model_table_sorted_indices() (in mod-

ule slycat.web.server.handlers), 166
get_model_table_unsorted_indices() (in

module slycat.web.server.handlers), 166
get_page() (in module slycat.web.server.handlers),

166
get_page_resource() (in module sly-

cat.web.server.handlers), 166
get_password_function() (in module sly-

cat.web.server), 162
get_project() (in module sly-

cat.web.server.handlers), 166
get_project() (slycat.web.client.Connection

method), 157
get_project_cache_object() (in module sly-

cat.web.server.handlers), 166
get_project_cache_object() (sly-

cat.web.client.Connection method), 157
get_project_models() (in module sly-

cat.web.server.handlers), 166
get_project_models() (sly-

cat.web.client.Connection method), 157
get_project_references() (in module sly-

cat.web.server.handlers), 166
get_project_references() (sly-

cat.web.client.Connection method), 157
get_projects() (in module sly-

cat.web.server.handlers), 167
get_projects() (slycat.web.client.Connection

method), 157
get_projects_list() (in module sly-

cat.web.server.handlers), 167
get_remote_file() (in module slycat.web.server),

162
get_remote_file() (in module sly-

cat.web.server.handlers), 167
get_remote_file() (slycat.web.client.Connection

method), 158
get_remote_file_server() (in module sly-

cat.web.server), 162
get_remote_host_dict() (in module sly-

cat.web.server.handlers), 167
get_remote_image() (in module sly-

cat.web.server.handlers), 167
get_remote_image() (slycat.web.client.Connection

method), 158
get_remote_job_status() (in module sly-

cat.web.server.handlers), 167
get_remote_job_status() (sly-

cat.web.server.remote.Session method), 174
get_remote_show_user_password() (in mod-

ule slycat.web.server.handlers), 167
get_remote_video() (in module sly-

cat.web.server.handlers), 167
get_remote_video_status() (in module sly-

cat.web.server.handlers), 167
get_remotes() (in module sly-

cat.web.server.handlers), 167
get_root() (in module slycat.web.server.handlers),

167
get_session() (in module slycat.web.server.remote),

176
get_session_server() (in module sly-

cat.web.server.remote), 176
get_session_status() (in module sly-

cat.web.server.handlers), 167
get_sid() (in module slycat.web.server.handlers), 167
get_statistics() (slycat.darray.MemArray

method), 149
get_statistics() (slycat.darray.Prototype

method), 150
get_statistics() (slycat.hdf5.DArray method),

151
get_table_metadata() (in module sly-

cat.web.server.handlers), 167
get_table_sort_index() (in module sly-

cat.web.server.handlers), 167
get_time_series_names() (in module sly-

cat.web.server.handlers), 167
get_unique() (slycat.hdf5.DArray method), 151
get_user() (in module slycat.web.server.handlers),

167
get_user() (slycat.web.client.Connection method),

158
get_user_config() (in module sly-

cat.web.server.handlers), 167
get_user_config() (sly-

cat.web.server.remote.Session method), 174
get_video() (slycat.web.server.remote.Session

method), 174
get_video_status() (sly-

cat.web.server.remote.Session method), 174
get_wizard_resource() (in module sly-

cat.web.server.handlers), 167
get_wizard_resource() (sly-

cat.web.client.Connection method), 159

Index 187

slycat Documentation, Release 1.2.0

H
hostname (slycat.web.server.remote.Session attribute),

174
hostname() (slycat.uri.URI method), 153
href() (slycat.uri.URI method), 153

I
is_project_administrator() (in module sly-

cat.web.server.authentication), 164
is_project_reader() (in module sly-

cat.web.server.authentication), 164
is_project_writer() (in module sly-

cat.web.server.authentication), 164
is_server_administrator() (in module sly-

cat.web.server.authentication), 164

J
job_time() (in module slycat.web.server.handlers),

167
join_model() (slycat.web.client.Connection method),

159
js_bundle() (in module slycat.web.server.handlers),

168

K
keys() (slycat.hdf5.ArraySet method), 150

L
launch() (slycat.web.server.remote.Session method),

174
load() (slycat.web.server.plugin.Manager method),

170
login() (in module slycat.web.server.handlers), 168
logout() (in module slycat.web.server.handlers), 168

M
Manager (class in slycat.web.server.plugin), 170
MemArray (class in slycat.darray), 149
mix() (in module slycat.web.server), 163
model_command() (in module sly-

cat.web.server.handlers), 168
model_sensitive_command() (in module sly-

cat.web.server.handlers), 168

N
ndim (slycat.darray.Prototype attribute), 150
ndim (slycat.darray.Stub attribute), 150
ndim (slycat.hdf5.DArray attribute), 151
null_lock (class in slycat.web.server.hdf5), 170

O
open() (in module slycat.web.server.hdf5), 170

open_id_authenticate() (in module sly-
cat.web.server.handlers), 168

P
parse() (in module slycat.hyperchunks), 152
parse_args() (slycat.web.client.ArgumentParser

method), 153
password() (slycat.uri.URI method), 153
path() (in module slycat.hdf5), 152
path() (in module slycat.web.server.hdf5), 170
port() (slycat.uri.URI method), 153
post_events() (in module sly-

cat.web.server.handlers), 168
post_events() (slycat.web.client.Connection

method), 159
post_log() (in module slycat.web.server.handlers),

168
post_model_arrayset_data() (in module sly-

cat.web.server.handlers), 168
post_model_file() (in module slycat.web.server),

163
post_model_files() (in module sly-

cat.web.server.handlers), 168
post_model_files() (slycat.web.client.Connection

method), 159
post_model_finish() (in module sly-

cat.web.server.handlers), 168
post_model_finish() (sly-

cat.web.client.Connection method), 159
post_project_bookmarks() (in module sly-

cat.web.server.handlers), 168
post_project_bookmarks() (sly-

cat.web.client.Connection method), 159
post_project_models() (in module sly-

cat.web.server.handlers), 168
post_project_models() (sly-

cat.web.client.Connection method), 159
post_project_references() (in module sly-

cat.web.server.handlers), 168
post_project_references() (sly-

cat.web.client.Connection method), 160
post_projects() (in module sly-

cat.web.server.handlers), 168
post_projects() (slycat.web.client.Connection

method), 160
post_remote_browse() (in module sly-

cat.web.server.handlers), 168
post_remote_browse() (sly-

cat.web.client.Connection method), 160
post_remote_command() (in module sly-

cat.web.server.handlers), 168
post_remote_launch() (in module sly-

cat.web.server.handlers), 169

188 Index

slycat Documentation, Release 1.2.0

post_remotes() (in module sly-
cat.web.server.handlers), 169

post_remotes() (slycat.web.client.Connection
method), 160

post_submit_batch() (in module sly-
cat.web.server.handlers), 169

post_upload_finished() (in module sly-
cat.web.server.handlers), 169

post_uploads() (in module sly-
cat.web.server.handlers), 169

project_acl() (in module sly-
cat.web.server.authentication), 164

protocol() (slycat.uri.URI method), 153
Prototype (class in slycat.darray), 149
put_attachment() (sly-

cat.web.server.database.couchdb.Database
method), 164

put_model() (in module slycat.web.server.handlers),
169

put_model() (slycat.web.client.Connection method),
160

put_model_array() (in module slycat.web.server),
163

put_model_arrayset() (in module sly-
cat.web.server), 163

put_model_arrayset() (in module sly-
cat.web.server.handlers), 169

put_model_arrayset() (sly-
cat.web.client.Connection method), 160

put_model_arrayset_array() (in module sly-
cat.web.server.handlers), 169

put_model_arrayset_array() (sly-
cat.web.client.Connection method), 160

put_model_arrayset_data() (in module sly-
cat.web.server), 163

put_model_arrayset_data() (in module sly-
cat.web.server.handlers), 169

put_model_arrayset_data() (sly-
cat.web.client.Connection method), 160

put_model_file() (in module slycat.web.server),
163

put_model_inputs() (in module slycat.web.server),
163

put_model_inputs() (in module sly-
cat.web.server.handlers), 169

put_model_inputs() (slycat.web.client.Connection
method), 160

put_model_parameter() (in module sly-
cat.web.server), 163

put_model_parameter() (in module sly-
cat.web.server.handlers), 169

put_model_parameter() (sly-
cat.web.client.Connection method), 160

put_project() (in module sly-

cat.web.server.handlers), 169
put_project() (slycat.web.client.Connection

method), 161
put_reference() (in module sly-

cat.web.server.handlers), 169
put_upload_file_part() (in module sly-

cat.web.server.handlers), 169

R
register_directory() (sly-

cat.web.server.plugin.Manager method),
170

register_marking() (sly-
cat.web.server.plugin.Manager method),
170

register_model() (sly-
cat.web.server.plugin.Manager method),
171

register_model_command() (sly-
cat.web.server.plugin.Manager method),
171

register_page() (sly-
cat.web.server.plugin.Manager method),
171

register_page_bundle() (sly-
cat.web.server.plugin.Manager method),
171

register_page_resource() (sly-
cat.web.server.plugin.Manager method),
171

register_parser() (sly-
cat.web.server.plugin.Manager method),
171

register_password_check() (sly-
cat.web.server.plugin.Manager method),
172

register_plugins() (sly-
cat.web.server.plugin.Manager method),
172

register_tool() (sly-
cat.web.server.plugin.Manager method),
172

register_wizard() (sly-
cat.web.server.plugin.Manager method),
172

register_wizard_resource() (sly-
cat.web.server.plugin.Manager method),
173

removeQuery() (slycat.uri.URI method), 153
removeSearch() (slycat.uri.URI method), 153
render() (in module slycat.web.server.template), 177
request() (slycat.web.client.Connection method), 161
require_array_json_parameter() (in module

slycat.web.server.handlers), 169

Index 189

slycat Documentation, Release 1.2.0

require_boolean_json_parameter() (in mod-
ule slycat.web.server.handlers), 169

require_integer_array_json_parameter()
(in module slycat.web.server.handlers), 169

require_integer_parameter() (in module sly-
cat.web.server.handlers), 169

require_json_parameter() (in module sly-
cat.web.server.handlers), 169

require_project_administrator() (in mod-
ule slycat.web.server.authentication), 164

require_project_reader() (in module sly-
cat.web.server.authentication), 164

require_project_writer() (in module sly-
cat.web.server.authentication), 164

require_server_administrator() (in module
slycat.web.server.authentication), 164

response_url() (in module slycat.web.server), 163
run_agent_function() (in module sly-

cat.web.server.handlers), 169
run_agent_function() (sly-

cat.web.server.remote.Session method), 174
run_remote_command() (sly-

cat.web.server.remote.Session method), 175

S
save() (slycat.web.server.database.couchdb.Database

method), 165
scan() (slycat.web.server.database.couchdb.Database

method), 165
scheme() (slycat.uri.URI method), 153
Session (class in slycat.web.server.remote), 173
SessionIdFilter (class in slycat.web.server.engine),

165
set_data() (slycat.darray.MemArray method), 149
set_data() (slycat.darray.Prototype method), 150
set_data() (slycat.hdf5.DArray method), 152
set_user_config() (in module sly-

cat.web.server.handlers), 169
set_user_config() (sly-

cat.web.server.remote.Session method), 175
sftp (slycat.web.server.remote.Session attribute), 175
shape (slycat.darray.Prototype attribute), 150
shape (slycat.darray.Stub attribute), 150
shape (slycat.hdf5.DArray attribute), 152
size (slycat.darray.Prototype attribute), 150
size (slycat.darray.Stub attribute), 150
size (slycat.hdf5.DArray attribute), 152
slycat-remotes.create_pool() (slycat-

remotes method), 146
slycat-remotes.login() (slycat-remotes

method), 146
slycat-remotes.pool.delete_remote()

(slycat-remotes.pool method), 146

slycat-remotes.pool.get_remote() (slycat-
remotes.pool method), 146

slycat-web-client.delete_model() (slycat-
web-client method), 147

slycat-web-client.delete_project()
(slycat-web-client method), 148

slycat.cca (module), 148
slycat.darray (module), 149
slycat.hdf5 (module), 150
slycat.hyperchunks (module), 152
slycat.uri (module), 153
slycat.web.client (module), 153
slycat.web.server (module), 161
slycat.web.server.authentication (mod-

ule), 164
slycat.web.server.database.couchdb (mod-

ule), 164
slycat.web.server.engine (module), 165
slycat.web.server.handlers (module), 165
slycat.web.server.hdf5 (module), 170
slycat.web.server.plugin (module), 170
slycat.web.server.remote (module), 173
slycat.web.server.template (module), 177
ssh_connect() (in module slycat.web.server), 163
start() (in module slycat.web.server.engine), 165
start_array() (slycat.hdf5.ArraySet method), 150
start_arrayset() (in module slycat.hdf5), 152
store_array() (slycat.hdf5.ArraySet method), 151
Stub (class in slycat.darray), 150
submit_batch() (slycat.web.server.remote.Session

method), 175

T
test_project_administrator() (in module sly-

cat.web.server.authentication), 164
test_project_reader() (in module sly-

cat.web.server.authentication), 164
test_project_writer() (in module sly-

cat.web.server.authentication), 164
test_server_administrator() (in module sly-

cat.web.server.authentication), 164
tests_request() (in module sly-

cat.web.server.handlers), 169
tostring() (in module slycat.hyperchunks), 152
toString() (slycat.uri.URI method), 153

U
update_model() (in module slycat.web.server), 163
update_model() (slycat.web.client.Connection

method), 161
URI (class in slycat.uri), 153
username (slycat.web.server.remote.Session attribute),

176
username() (slycat.uri.URI method), 153

190 Index

slycat Documentation, Release 1.2.0

V
validate_table_byteorder() (in module sly-

cat.web.server.handlers), 169
validate_table_columns() (in module sly-

cat.web.server.handlers), 169
validate_table_rows() (in module sly-

cat.web.server.handlers), 169
validate_table_sort() (in module sly-

cat.web.server.handlers), 169
valueOf() (slycat.uri.URI method), 153
view() (slycat.web.server.database.couchdb.Database

method), 165

W
write_file() (slycat.web.server.database.couchdb.Database

method), 165

Index 191

	Design
	Documentation:
	User Manual
	Design
	Tutorial
	Setup Slycat Clients
	Setup Slycat Web Server
	Docker Development
	Testing
	Coding Guidelines
	Plugins
	Colophon
	Models
	REST API
	Javascript API
	Python API
	Support

	Indices and tables
	HTTP Routing Table
	Python Module Index

